

Viskoelastische Stoßdämpfer

ACE: Ihr Partner für Industriestoßdämpfer, Gasfedern und Schwingungstechnik

Spezialkatalog 2019

Alle Produkte
Datenblätter & Kataloge
CAD-Datenbanken
Kostenlose Berechnungsprogramme
Vertriebspartner
Serviceangebote
News
etc.

www.ace-ace.de

VS-BA1, VS-BA5, VS-BXLR, VS-BALR

Einfaches Design - hohe Zuverlässigkeit

Energieaufnahme 0,1 KJ/Hub bis 1.000 KJ/Hub Hub 12 mm bis 1.300 mm

Die selbsteinstellenden, viskoelastischen Stoßdämpfer sind nach dem Prinzip der hydrostatischen Kompression konzipiert, in der die Funktionen eines Stoßdämpfers sowie einer Rückstellfeder vereint sind.

Die Vorteile dieser Baureihe sind hohe Dämpfungskoeffizienten, geringe Empfindlichkeiten gegenüber Temperaturschwankungen sowie erhöhte Sicherheiten durch die integrierte statische Vorspannung.

Viskoelastische Stoßdämpfer werden in einer Vielzahl von Anwendungen in der Schwerindustrie eingesetzt. Beispiele hierfür sind: Materialtransporte, Walzwerke, Militär, Verkehrswasserbau und die Papierindustrie.

Technische Daten

Energieaufnahme:

0,1 KJ/Hub bis 1.000 KJ/Hub **Hub:** 12 mm bis 1.300 mm

Auffahrgeschwindigkeit: 0,5 m/s bis 5 m/s. Abweichende Geschwindigkeiten auf Anfrage.

Dynamische Kraftaufnahme:

6 kN bis1.100 kN

Statische Kraftaufnahme:

6,5 kN bis 740 kN

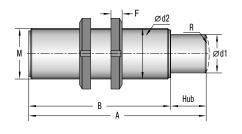
Zulässiger Temperaturbereich: -20 °C bis +50 °C. Abweichende Temperaturbereiche auf Anfrage.

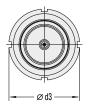
Einbaulage: Beliebig **Festanschlag:** Integriert

Material: VS-BA1: Außenkörper und Kolbenstange: Stahl verzinkt

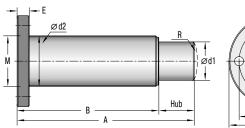
VS-BA5, VS-BXLR, VS-BALR: Außenkörper und Aufprallkopf: Stahl verzinkt oder grau lackiert; Kolbenstange: Stahl verzinkt

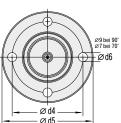
Dämpfungsmedium: Viskoelastisches Fluid **Anwendungsbereiche:** Schwerindustrie, Materialtransporte, Walzwerke, Militär, Verkehrswasserbau, Papierindustrie


Hinweis: Im Schleichgang kann der Dämpfer eingefahren werden. Es baut sich kein Staudruck auf und es entsteht keine Bremswirkung.


Auf Anfrage: Sonderausführungen

ACE


VS-BA1


VS-BA1-Fc Flansch Frontseite

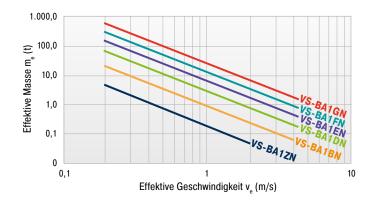
VS-BA1-Fa Flansch Rückseite

Die Berechnung und Auslegung des geeigneten Dämpfers sollte durch ACE erfolgen oder überprüft werden.

Abmessung	en												
	Hub	Α	В	d1	d2	d3	d4	d5	d6	Е	F	М	R
TYPEN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
VS-BA1ZN	12	75	53	19	20	38	41	57	7	10	7	M25x1,5	/
VS-BA1BN	22	120	98	25	32	52	60	80	9	12	8	M35x1,5	/
VS-BA1DN	35	175	140	38	45	70	70	90	9	12	11	M50x1,5	/
VS-BA1EN	45	213	168	60	72	98	100	122	11	10	13	M75x2	130
VS-BA1FN	60	270	210	74,5	90	120	120	150	13	12	16	M90x2	150
VS-BA1GN	80	337	257	90	110	143	143	175	18	14	19	M110x2	350

Leistungsdaten	Leistungsdaten											
	Max. Energieaufnahme											
		Dynamische Kraftaufnahme	Dynamische Kraftaufnahme	Statische Kraftaufnahme								
	W_3	min.	max.	max.								
TYPEN	kJ/Hub	kN	kN	kN								
VS-BA1ZN	0,1	6	11	6,5								
VS-BA1BN	0,43	14	27	19,5								
VS-BA1DN	1,5	28	60	40								
VS-BA1EN	3,4	45	100	65								
VS-BA1FN	7	90	150	94								
VS-BA1GN	14	100	230	173								

Bei Bestellung unbedingt angeben

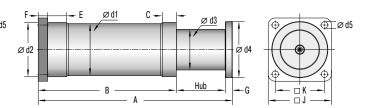

Abzubremsende Masse: m (kg) Auffahrgeschwindigkeit: v (m/s) max. Schleichgang-Geschwindigkeit: vs (m/s)

Motorleistung: P (kW)

Haltemoment-Faktor: HM (normal 2,5) (Alternativ: Antriebskraft F (N)) Anzahl parallel wirkender Dämpfer: n

Flanschbefestigung: -Fa

-Fc (inkl. zwei Nutmuttern)


Einfaches Design – hohe Zuverlässigkeit

VS-BA5

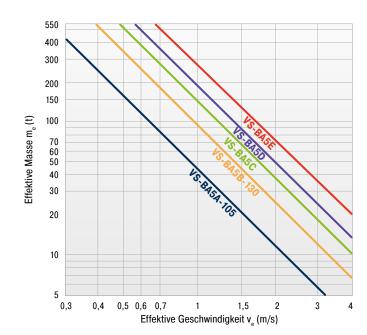
VS-BA5-Fc Flansch Frontseite

VS-BA5-Fa Flansch Rückseite

Die Berechnung und Auslegung des geeigneten Dämpfers sollte durch ACE erfolgen oder überprüft werden.

Abmessunge	n													
	Hub	Α	В	С	d1	d2	d3	d4	d5	Е	F	G	J	K
TYPEN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
VS-BA5A-105	105	415	295	30	111	116	87	120	14	60	20	15	135	105
VS-BA5B-130	130	500	395	39	139	142	117	140	15	60	30	15	155	125
VS-BA5C	140	520	345	36	154	160	132	158	18	35	30	35	175	140
VS-BA5D	160	585	385	40	175	180	152	180	22	40	35	40	215	170
VS-BA5E	180	670	445	45	208	215	182	220	26	85	40	45	250	195

Leistungsdaten				
	Max. Energieaufnahme			
		Dynamische Kraftaufnahme	Dynamische Kraftaufnahme	Statische Kraftaufnahme
	W ₃	min.	max.	max.
TYPEN	kJ/Hub	kN	kN	kN
VS-BA5A-105	25	167	310	174
VS-BA5B-130	50	260	500	290
VS-BA5C	68	350	700	495
VS-BA5D	100	420	820	550
VS-BA5E	150	650	1.100	740

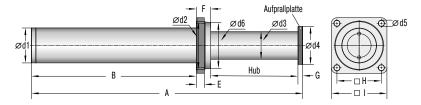

Bei Bestellung unbedingt angeben

Abzubremsende Masse: m (kg) Auffahrgeschwindigkeit: v (m/s) max. Schleichgang-Geschwindigkeit: vs (m/s)

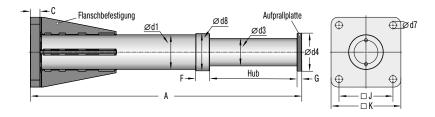
Motorleistung: P (kW)

Haltemoment-Faktor: HM (normal 2,5) (Alternativ: Antriebskraft F (N)) Anzahl parallel wirkender Dämpfer: n

Flanschbefestigung: -Fa



Stand 01.2019 - Änderungen vorbehalten


Einfaches Design - hohe Zuverlässigkeit

VS-BXLR

VS-BXLR-Fc Flansch Frontseite

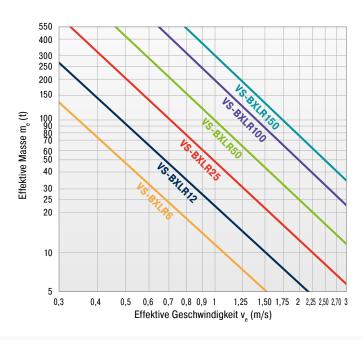
VS-BXLR-Fa Flansch Rückseite

Die Berechnung und Auslegung des geeigneten Dämpfers sollte durch ACE erfolgen oder überprüft werden.

Abmessunger	1																		
	Hub ¹	Α	В	С	d1	d2	d3	d4	d5	d6	d7	d8	Е	F	G	I	K	Н	J
TYPEN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
VS-BXLR6-150	150	410	231	-	50	90	38	50	9	-	-	-	19	19	10	90	-	70	-
VS-BXLR12-150	150	480	285	20	75	90	57	80	11	85	17	85	18	33	12	110	125	85	90
VS-BXLR25-200	200	620	370	20	90	110	72	100	14	100	19	95	20	38	12	135	160	105	120
VS-BXLR50-275	275	855	520	30	110	150	87	120	18	145	22	118	25	45	15	175	220	140	170
VS-BXLR50-400	400	980	520	30	110	150	87	120	18	145	22	118	25	45	15	175	220	140	170
VS-BXLR100-400	400	1370	910	35	110	150	87	120	18	145	22	118	25	45	15	175	260	140	210

¹ Ab Hub 400 Ausführung Flanschbefestigung Fa nur auf Anfrage.

Leistungsdaten				
	Max. Energieaufnahme			
		Dynamische Kraftaufnahme	Dynamische Kraftaufnahme	Statische Kraftaufnahme
	W_3	min.	max.	max.
TYPEN	kJ/Hub	kN	kN	kN
VS-BXLR6-150	6	25	50	27,5
VS-BXLR12-150	12	66	100	54
VS-BXLR25-200	25	95	150	95
VS-BXLR50-275	50	118	230	165
VS-BXLR50-400	50	75	150	104
VS-BXLR100-400	100	175	320	224

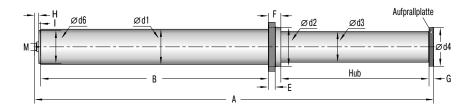

Bei Bestellung unbedingt angeben

Abzubremsende Masse: m (kg) Auffahrgeschwindigkeit: v (m/s) max. Schleichgang-Geschwindigkeit: vs (m/s)

Motorleistung: P (kW)

Haltemoment-Faktor: HM (normal 2,5) (Alternativ: Antriebskraft F (N)) Anzahl parallel wirkender Dämpfer: n

Flanschbefestigung: -Fa


Stand 01.2019 - Änderungen vorbehalten

Einfaches Design – hohe Zuverlässigkeit

VS-BALR

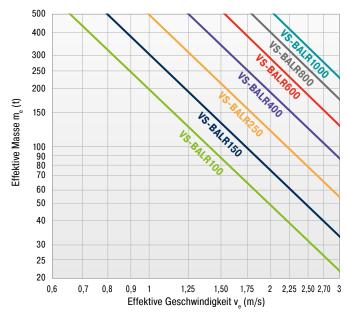
VS-BALR-Fc Flansch Frontseite

Die Berechnung und Auslegung des geeigneten Dämpfers sollte durch ACE erfolgen oder überprüft werden.

Abmessung	Abmessungen																
	Hub ¹	Α	В	d1	d2	d3	d4	d5	d6	Е	F	G	Н	I	J	K	М
TYPEN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
VS-BALR-100	400	1.120	636	130	145	109,3	140	18	119	25	45	15	16	8	175	140	M25x1,5
VS-BALR-150	500	1.350	751	140	170	120	150	22	130	25	55	20	16	8	215	170	M28x1,5
VS-BALR-250	650	1.750	999	155	170	135	170	22	145	30	55	20	18	8	215	170	M32x1,5
VS-BALR-400	850	2.185	1232	175	220	150	190	27	156	35	60	25	18	8	265	210	M35x1,5
VS-BALR-600	1.050	2.555	1392	200	220	175	215	27	185	35	60	25	18	10	265	210	M40x1,5
VS-BALR-800	1.200	2.935	1600	220	250	190	235	30	200	37	75	30	20	10	300	240	M42x1,5
VS-BALR-1000	1.300	3.225	1790	230	250	205	248	30	215	40	75	30	20	10	300	240	M48x1,5

¹ Ab Hub 1.050 Ausführung Flanschbefestigung Fc nur auf Anfrage.

Leistungsdaten				
	Max. Energieaufnahme			
		Dynamische Kraftaufnahme	Dynamische Kraftaufnahme	Statische Kraftaufnahme
	W_3	min.	max.	max.
TYPEN	kJ/Hub	kN	kN	kN
VS-BALR-100	100	190	310	230
VS-BALR-150	150	200	390	300
VS-BALR-250	250	270	490	375
VS-BALR-400	400	340	600	425
VS-BALR-600	600	390	600	-
VS-BALR-800	800	430	860	620
VS-BALR-1000	1.000	500	1.000	725

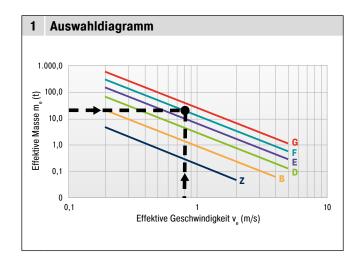

Bei Bestellung unbedingt angeben

Abzubremsende Masse: m (kg) Auffahrgeschwindigkeit: v (m/s) max. Schleichgang-Geschwindigkeit: vs (m/s)

Motorleistung: P (kW)

Haltemoment-Faktor: HM (normal 2,5) (Alternativ: Antriebskraft F (N)) Anzahl parallel wirkender Dämpfer: n

Flanschbefestigung: -Fc



Stand 01.2019 – Änderungen vorbehalten

Berechnungsgrundlagen zur Auslegung von Viskoelastischen Stoßdämpfern

Berechnungsschritte 4 bis 6 gelten nur für Dämpfertyp VS-BA1FN. Detaillierte Berechnung für andere Dämpfertypen bitte bei ACE anfragen.

5 Berechnung effektive Stützkraft Rdye $Q = \left[\left(\frac{Q \max - Q0}{H} \right) x C_e + Q0 \right] (0.1v + 0.8)$

Berechnung effektive Energieaufnahme $W_1 = \frac{1}{2} \text{ mv}_2$

3 Zulässige Taktfrequenz

 $W_1 = W_3 \cdot x$

4 Berechnung Nutzhub
$$H_{e} = H \left(\sqrt{\frac{W_{1}}{W_{n} (0,03 v + 0,24)}} + 1,36 - 1,17 \right)$$

Auswahldiagramm ergibt VS-BA1FN
Die Ergebnisse sind:
 W₁ = 7 kJ
 U = 60 mm

H = 60 mm Qmax = 150 kN Q0 = 90 kN

Berechnungsbeispiel

- Pro Hub ist eine Energie von W₃ = 4,8 kNm zu absorbieren.
- 3. Maximale Taktfrequenz ist $<20 \cdot 7/4,8$.
- 4. Der Nutzhub s beträgt 49 mm.

$$60\left(\sqrt{\frac{4,8}{7(0,03.0,8+0,24)}}+1,36-1,17\right)$$

5. $Q = [(150-90)\cdot(49/60)+90]\cdot(0,1x0,8+0,8)=122 \text{ kN}$

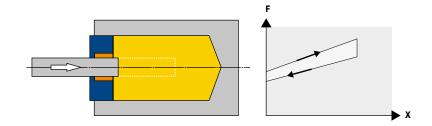
Alle Leistungsmerkmale können auf Wunsch geändert werden. Bitte teilen Sie uns Ihre spezifischen Anforderungen mit.

T+49 (0)2173 - 9226-20

Viskoelastische Elemente mit hydrostatischer Kompression von Elastomeren

Viskoelastische Federn

Extrem kompakt – große Energiespeicher


Die selbsteinstellenden, viskoelastischen Federn sind nach dem Prinzip der hydrostatischen Kompression als Energiespeicher konzipiert.

Die Vorteile sind höhere Zuverlässigkeit, extrem kompakte Bauweise und einfache Montage.

Viskoelastische Federn werden u.a. in Walzwerken der Stahlindustrie eingesetzt.

Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

Zulässiger Temperaturbereich:

-20 °C bis +50 °C. Abweichende Temperaturen auf Anfrage.

Einbaulage: Beliebig
Festanschlag: Integriert
Material: Stahl oder Edelstahl

Dämpfungsmedium: Viskoelastisches Fluid

Anwendungen: Walzwerke, Warmwalzwerke, Kaltwalzwerke, Dressierwalzwerke, Zinnwalzwerke, Temperwalzwerke, Blechwalzwerke, Brammen- und Blockwalzwerke, Stabwalzwerke, Stangenwalzwerke, Schleusen, Häfen

Stand 01.2019 – Änderungen vorbehalten

ACE Deutschland

Der kürzeste Weg zum perfekten Stoßdämpfer

ACE Stoßdämpfer GmbH

Postfach 1510 40740 Langenfeld

Albert-Einstein-Straße 15 T +49 (0)2173 - 9226-10 40764 Langenfeld F +49 (0)2173 - 9226-19

Germany

info@ace-int.eu www.ace-ace.de

Auf der ganzen Welt zuhause

Internationale ACE Niederlassungen

GREAT BRITAIN ACE Fabreeka UK

Unit 404 Easter Park, Haydock Lane Haydock, WA11 9TH, U.K.

T +44 (0)1942 - 727 440 F +44 (0)1942 - 717 273 www.ace-controls.co.uk

JAPAN

ACE Controls Japan L.L.C.

City Center Bldg. II 2fl 3-1-42, Chigasaki-minami, Tsuzuki-ku Yokohama, 224-0037, Japan

T +81 (0)45 - 945-0123 F +81 (0)45 - 945-0122 www.acecontrols.co.jp

P.R. CHINA **ACE Controls**

No. 8 Longxiang Road, Wujin National High-tech Industrial Zone, Changzhou, Jiangsu Province, CN-213164, P. R. China

T +86 (0)519 - 8622-3520 F +86 (0)519 - 8622-3550 www.ace-ace.cn

USA

ACE Controls International Inc.

23425 Industrial Park Dr., Farmington Hills Michigan 48335, USA

T +1 248 - 476-0213 F +1 248 - 476-2470 www.acecontrols.com

