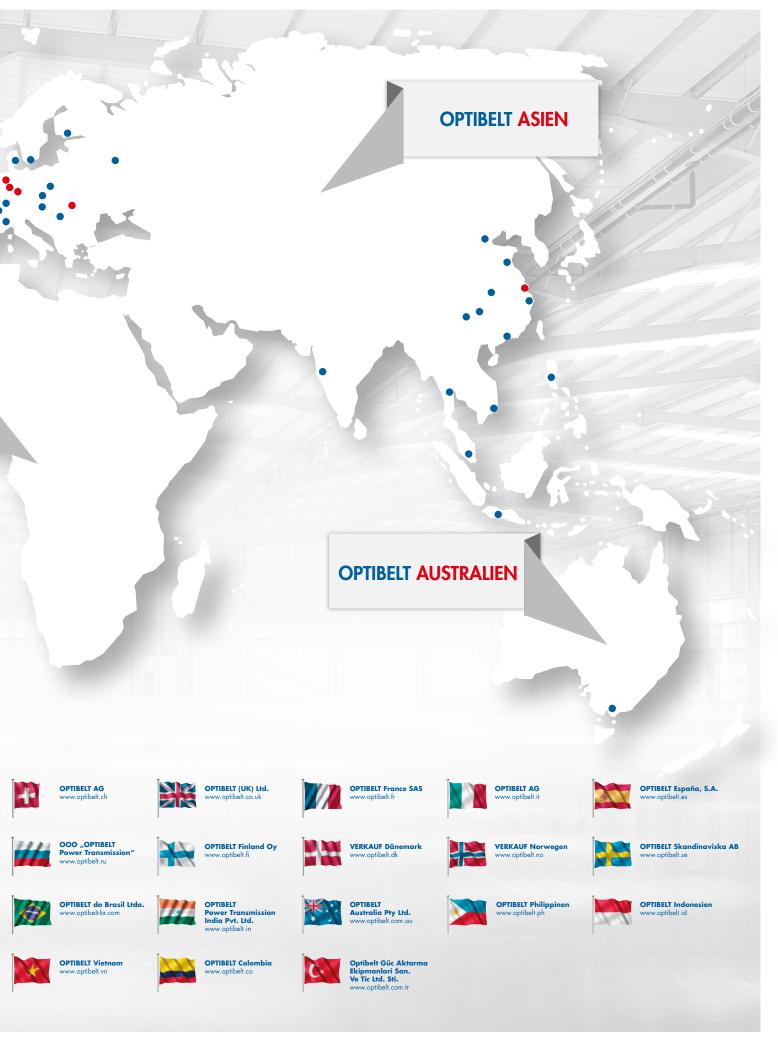


TECHNISCHES HANDBUCH

TECHNISCHES HANDBUCH KEILRIPPENANTRIEBE



Diese Unterlage enthält alle wichtigen technischen Informationen und die Methode zur Berechnung von Antrieben mit optibelt RB Rippenbändern und RBS Keilrippenscheiben für den Maschinenbau. Das OPTIBELT-Lieferprogramm für Rippenbandantriebe richtet sich nach den Normen ISO 9982, RMA/MPTA IP-26 und DIN 7867.

Unsere Ingenieure der Fachabteilung Anwendungstechnik beraten Sie selbstverständlich kostenlos über den Einsatz dieser Antriebssysteme und lösen mit Ihnen gemeinsam Ihre Antriebssituationen.

Gerade bei Großserien sollten Sie keinesfalls auf diesen Service verzichten, der unter Einsatz modernster Computerprogramme die für Sie optimale Lösung bietet.

RIPPENBÄNDER UND KEILRIPPENSCHEIBEN

Rippenbänder

1/7/8 optibelt RB

Rippenbänder, Profil PJ Längen: 280-2489 mm Weitere Abmessungen auf Anfrage

2/6 optibelt RB

Rippenbänder, Profil PK Längen: 559-2845 mm Weitere Abmessungen auf Anfrage

3

Rippenbänder, Profil PH Längen: 559-2155 mm

Weitere Abmessungen auf Anfrage

optibelt RB 4

Rippenbänder, Profil PM Längen: 2286-15266 mm Weitere Abmessungen auf Anfrage

5 optibelt RB

Rippenbänder, Profil PL Längen: 954-6096 mm Weitere Abmessungen auf Anfrage

optibelt RB

Elastische Rippenbänder Profile: EPH, EPJ auf Anfrage (ohne Abb.)

Keilrippenscheiben

optibelt RBS Keilrippenscheiben für zylindrische Bohrung

optibelt RBS

Keilrippenscheiben für Taper-Buchsen

optibelt RBS

Keilrippenscheiben mit Taper-Buchsen

optibelt RBS

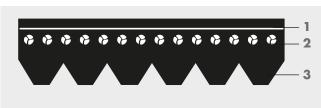
Keilrippenscheiben mit Taper-Buchsen

INHALTSVERZEICHNIS

	Einführung	1
	Vertriebsorganisation der Arntz OPTIBELT Gruppe	2
	Rippenbänder und Keilrippenscheiben	4
PRODUKTBESCHREIBUNG	Standard-Rippenbänder optibelt RB	7
	Elastische Rippenbänder optibelt ERB / Sonderlösungen	8
	Eigenschaften – Anwendungsgebiete Elastische Rippenbänder optibelt ERB / Rollenbahn	9
	Sonderausführungen	10-11
	Kfz-Antriebe optibelt CAR POWER RBK	12
STANDARDSORTIMENT	Rippenbänder	13-14
BERECHNUNG	Erklärung der Formelzeichen	15
	OPTIBELT-Nennleistung P _N – Winkelfaktor c ₁	16
	Längenfaktor c ₃	1 <i>7</i> -18
	Mindestverstellwege x/y des Achsabstandes a _{nom}	19
	Belastungsfaktor c ₂	20
	Richtlinien für die Wahl des Rippenbandprofils	21
	Formeln und Berechnungsbeispiel	22-24
	Antriebsberechnung – optibelt CAP	25
LEISTUNGSWERTE	optibelt RB Rippenbänder, Profil PH	26
	optibelt RB Rippenbänder, Profil PJ	27
	optibelt RB Rippenbänder, Profil PK	28
	optibelt RB Rippenbänder, Profil PL	29
	optibelt RB Rippenbänder, Profil PM	30

INHALTSVERZEICHNIS

SONDERANTRIEBE	Keil-Flach-Antrieb	31-32
	Spann-/Führungsrollen	33-34
KEILRIPPENSCHEIBEN	Messscheiben – Längen-Messbedingungen nach DIN 7867 / ISO 998	32 35
	Maße nach DIN 7867 / ISO 9982	36
	Standardsortiment optibelt TB Taper-Buchsen	37
	Keilrippenscheiben für Taper-Buchsen, Profil PJ	38-41
	Keilrippenscheiben für Taper-Buchsen, Profil PL	42-46
	Keilrippenscheiben für zylindrische Bohrung, Profil PJ	47
KONSTRUKTIONSHILFEN	Vorspannung	48-51
	Frequenz-Messgerät optibelt TTMINI S	52
	Frequenz-Messgerät optibelt TTOPTICAL	53
	Bestimmung der Achskraft/Achsbelastung im dynamischen Zustand	54
	Längentoleranzen – Montage und Wartung	55
	Rippenbandbreiten	56
	Störung – Ursache – Abhilfe	57-58
	Zusatzprogramm	
	optibelt TT MINI S	
	optibelt LASER POINTER II	
	OPTIBELT-Rillenlehren	
	Datenblatt zur Berechnung/Überprüfung von Antrieben	60-61


PRODUKTBESCHREIBUNG

STANDARD-RIPPENBÄNDER optibelt RB

Aufbau

OPTIBELT Rippenbänder bestehen aus:

- 1 Deckplatte: verschleißfeste Polychloropren-Gummimischung
- 2 Zugstrang: dehnungsarmer Polyestercord, in eine Gummihaftmischung eingebettet
- 3 Unterbau: keilförmige, parallele Rippen aus einer verschleißfesten Gummimischung

Eigenschaften

- vereint hohe Flexibilität der Flachriemen mit dem hohen Leistungsniveau der Keilriemen
- kleine Scheibendurchmesser
- hohe Riemengeschwindigkeit möglich
- guter Kraftschluss und hohes Leistungsvermögen
- unempfindlich gegen Drehmomentstöße und kurzzeitige Überlastung

Anwendungsgebiete

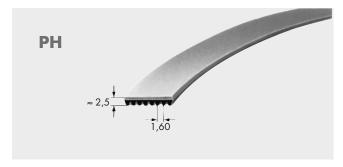
Profil PH

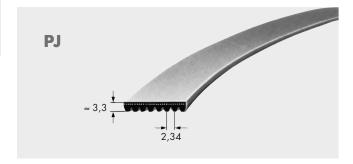
Hausgeräte, medizinische Geräte, Werkzeugmaschinen, kleine Förderer, Transportband, Papiertransportmaschine

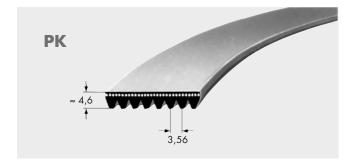
Profil PI

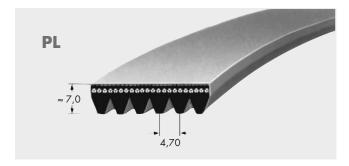
Kleinkompressoren, Betonmischer, weiße Industrie, Kleinwerkzeuge

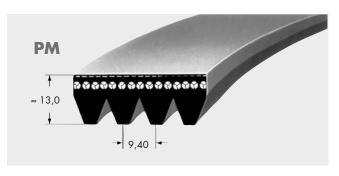
Profil PK

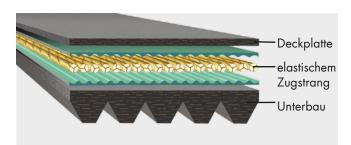

Ventilatoren, Klimaanlagen, Betonsägen, Holzsägen, Industriewaschmaschinen


Profil PL


Kompressoren (> 30 kW), Industriewaschmaschine


Papierindustrie, Landmaschinen (Silofräse), Zuckerrohrschneider


Standardprofile


PRODUKTBESCHREIBUNG

ELASTISCHE RIPPENBÄNDER optibelt ERB / SONDERLÖSUNGEN

Aufbau

Die elastischen Rippenbänder der Profile EPH, EPJ und EPK bestehen aus:

Das elastische Rippenband zeichnet sich u.a. aufgrund der sehr individuellen Auslegungs- und Anpassungsmöglichkeiten für unterschiedlichste Antriebslösungen speziell bei festen Achsabständen aus.

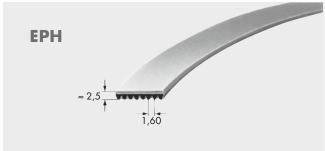
Des Weiteren können durch eine zusätzliche rippenseitige Oberflächenveredelung die Laufeigenschaften des Rippenbandes nochmals optimiert werden.

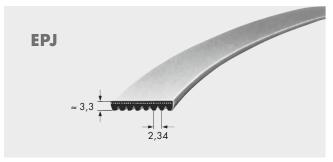
Vorteile und Eigenschaften

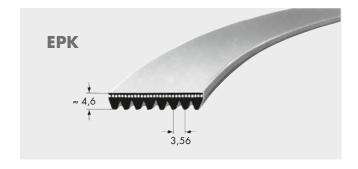
- Montage bei festem Achsabstand, ohne Verstellvorrichtung zum Spannen des Riemens
- durch die hohe Riemenelastizität hohes Dämpfungsverhalten und guter Ausgleich von Stößen
- wartungsfrei und kein Nachspannen
- einfache Montage in Servicebereichen
- individuelle Auslegung in Bezug auf Spannungs- und Dehnungscharakteristik

Abmessungen

Längenbereiche sind profilabhängig, ab 250 mm bis 2500 mm.


- Rippenband elektrisch leitfähig auf Anfrage
- Rippenband hochspannungsfest auf Anfrage
- PAK-optimiert auf Anfrage


Keilrippenscheiben


Umfangreiches Standardsortiment, siehe Sortimentsliste, Sonderscheiben auf Anfrage.

Bitte wenden Sie sich für individuelle Antriebslösungen an unsere Ingenieure der Anwendungstechnik.

Sonderausführungen

PRODUKTBESCHREIBUNG EIGENSCHAFTEN - ANWENDUNGSGEBIETE ELASTISCHE RIPPENBÄNDER optibelt ERB / ROLLENBAHN

Nachspannen überflüssig längere Service-Intervalle optimales Dämpfen von Antriebsschwingungen

In einigen Rollenbahnsystemen kommen neuerdings elastische Rippenbänder vom Typ optibelt ERB zum Einsatz. Die Riemen treiben die einzelnen Rollen an. Sie müssen im industriellen Dauereinsatz nicht nachgespannt werden und sind daher praktisch wartungsfrei. Damit kommen elastische Rippenbänder nun auch im Bereich der Transporttechnik zum Einsatz.

Die Vorteile liegen auf der Hand, da elastische Rippenbänder nicht erst einlaufen und nachgespannt werden müssen. Bei optibelt ERB hingegen wird die notwendige Spannung mit erhöhter Vorspannung und gezieltem Setzverhalten des Riemens erreicht, daher kann ein Nachspannen entfallen.

Auch für den Endanwender – etwa Industriebetriebe, die die Rollenbahnen zum Beispiel für Transportaufgaben im Warenlager einsetzen – bringt der OPTIBELT Riemen viele Vorteile: Dank des Riemens werden Schwingungen aus dem Antrieb besser gedämpft, weswegen der Rollenantrieb besonders vibrationsarm läuft. Das verringert zum einen die Beanspruchung der Bauteile und erhöht die Lebensdauer der einzelnen Rollenlager. Zum anderen bedeuten weniger Vibrationen auch weniger Geräusche und damit bessere Arbeitsbedingungen.

Angesichts der klaren Vorteile für Anwender und Hersteller lautet das Ziel, künftig viele Antriebe im Bereich der Rollenbahnen vom Rund- oder Zahnriemen auf elastische Rippenbänder aus dem Hause OPTIBELT umzustellen.

PRODUKTBESCHREIBUNG SONDERAUSFÜHRUNGEN

PRODUKTBESCHREIBUNG

SONDER AUSFÜHRUNGEN

OPTIBELT RIPPENBÄNDER MIT ARAMID-ZUGTRÄGER UND OPTIBELT RIPPENBÄNDER MIT SONDERBESCHICHTUNGEN

Rippenbänder mit Aramid-Zugträger

Der Aramid-Zugstrang zeichnet sich gegenüber den üblichen Zugmaterialien, z.B. Polyester, durch extrem geringe Dehnung aus. Die Bruchfestigkeit ist bei gleicher Fadenstärke annähernd doppelt so hoch. Trotz der hohen Festigkeit ist die Faser biegewillig und besitzt noch ausreichend Elastizität, um Stöße bzw. Schwingungen zu dämpfen.

OPTIBELT Rippenbänder mit Aramid-Zugträger sollen dort eingesetzt werden, wo

- höchste Leistungsübertragung gefordert,
- eingeschränkte Baubreiten gegeben,
- geringe Verstellwege zum Auflegen und Spannen sowie
- hohe Temperatureinwirkungen vorhanden sind.

Der Einsatz der Rippenbänder mit Aramid-Zugträger empfiehlt sich vorzugsweise an stark beanspruchten Antrieben im Maschinenbau, Sondermaschinenbau, Landmaschinenbau und in Gartengeräten.

Im Rahmen dieser Ausführungen können nicht alle Kriterien behandelt werden. Lassen Sie sich durch unsere Ingenieure der Anwendungstechnik beraten.

Profile

PK/PL mit 8M- und 14M-Auflage

Scheiben

Zahnriemenscheiben HTD oder RPP und Keilrippenscheiben Profil PK und PL

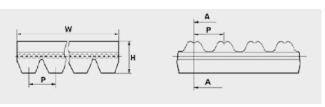
Anwendungsgebiete

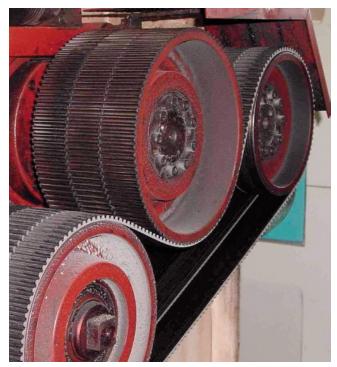
Der Zahnriemen optibelt OMEGA mit zusätzlichem PK-Rippenbandprofil auf der Rückseite des Riemens ist perfekt für die Verwendung in Mühlen, z.B. Lebensmittel-, Getreide-, Frucht- und Mehlmühlen, wo die Richtung der Antriebsscheibe auf der Rückseite umgekehrt werden kann und der Schlupf notwendig ist, wenn der Antrieb blockiert.

Vorteil

Die mit Aramidfasern versetzte Gummiverbindung ist sehr verschleißfest. Die Rückseite mit dem PK-Profil wird in einem Arbeitsgang mit dem Zahnriemen geformt.

OPTIBELT Rippenbänder mit Sonderbeschichtungen


Aus der Vielfalt der Beschichtungs- und Bearbeitungsmöglichkeiten in Verbindung mit den Eigenschaften des Rippenbandes hat OPTIBELT innovative Lösungen in der Transporttechnik entwickelt. OPTIBELT Rippenbänder können mit einer zusätzlichen Beschichtung auf dem Rücken versehen werden. Die Beschichtung wird in einem speziellen Klebeverfahren aufgebracht.


Rippenbänder mit Auflage können anstelle aufwendiger Förderbänder eingesetzt werden. Sie laufen beispielsweise einzeln oder in mehreren Strängen nebeneinander, transportieren das Fördergut waagerecht sowie bei Steigung und Gefälle. Senkrechte Förderung ist möglich, wenn die Rippenbänder Rücken an Rücken angeordnet sind und das Gut dazwischengepresst wird.

Anwendungsgebiete

Aus der Vielfalt der Einsatzgebiete einige Beispiele, wo OPTIBELT Rippenbänder mit Beschichtungen erfolgreich verwendet werden:

- Transport von Türen, Schrankteilen, Furnier- und Kunststoffplatten in der Holzverarbeitung
- Transport von Karosserieteilen und scharfkantigen Blechen in der Kraftfahrzeugindustrie
- Transport von Kartonagen und Kisten in der Verpackungsindustrie

PRODUKTBESCHREIBUNG

KFZ-ANTRIEBE optibelt CAR POWER RBK

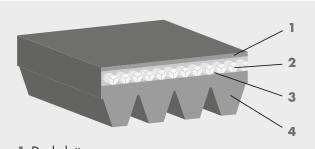
Die Bauweise neuer Motoren wird immer platzsparender. Kleine Scheibendurchmesser und geringe Bautiefen sind da keine Seltenheit. Extrem elastisch und formbeständig passen sich OPTIBELT Rippenbänder der jeweiligen Antriebsgeometrie an. Biegewillig suchen sie sich als Serpentinenantrieb ihren Weg durch das Motorlabyrinth. Sehr leise und wendig sorgt das flexible Rippenband für die Aggregat-Steuerung. OPTIBELT Rippenbänder sorgen in PKW, NKW und Bussen für den Antrieb der Nebenaggregate. Schwingungsdämpfend geben sie dem Generator, dem Klimakompressor, der Lenkhilfspumpe den richtigen Dreh.

Eigenschaften

- große Übersetzungsverhältnisse
- hohe Leistungsübertragung
- minimaler Schlupf
- weitgehend öl- und temperaturbeständig
- vibrationsfrei und leise
- außergewöhnlich belastbar

Profile

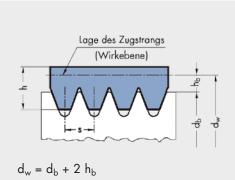
PJ, PK, DPK


Abmessungen

2 PK von 786 bis 905 mm 3 PK von 550 bis 1285 mm 4 PK von 560 bis 1520 mm 5 PK von 625 bis 2055 mm 6 PK von 675 bis 2680 mm 7 PK von 870 bis 2355 mm 8 PK von 800 bis 2605 mm 9 PK von 1200 bis 4145 mm 10 PK von 1108 bis 2063 mm 11 PK von 1515 bis 2055 mm 12 PK von 1165 bis 2500 mm 3 EPK von 806 bis 885 mm 4 EPK von 711 bis 1102 mm 5 EPK von 690 bis 926 mm 6 EPK von 691 bis 1873 mm 6 DPK von 1188 bis 1853 mm 7 DPK von 1360 bis 1400 mm Weitere Abmessungen auf Anfrage.

Anwendungsgebiete

Verwendung im Kraftfahrzeugbau zum Antrieb der Aggregate



- 1 Deckplatte: verschleißfeste Polychloropren-Gummimischung
- **2** Zugstrang: dehnungsarmer Polyestercord
- 3 Einbettung: haftfreudige Polychloropren-Gummimischung (Einbettfolie)
- 4 Kern: Polychloropren-Gummimischung

STANDARDSORTIMENT

RIPPENBÄNDER

Profil		РН	PJ	PK	PL	PM
Rippenabstand	s [mm]	1,60	2,34	3,56	4,70	9,40
Riemenhöhe	≈ h [mm]	2,50	3,30	4,60	7,00	13,00
Riemengeschwindigkeit	≈ v [m/s]	60	60	50	40	30
Mindest-Scheibendurchmesser	d _{b min} [mm]	13	20	45	75	180
Bezugs-Linien-Differenz	h_b	0,80	1,25	1,60	3,50	5,00

	Prof	il PH		Profil PJ					
Bezugsl	änge L _b	Bezugsl	änge L _b	Bezugsl	länge L _b	Bezugsl	änge L _b	Bezugs	änge L _b
[mm]	[inch]								
698 735 762 813 858	27,50 28,90 30,00 32,00 33,80	1397 1439 1475 1600 1854	55,00 56,70 58,10 63,00 73,00	280 330 356 362 381	11,00 13,00 14,00 14,30 15,00	1130 1150 1168 1194 1200	44,50 45,30 46,00 47,00 47,30	1915 1930 1956 1965 1981	75,40 76,00 77,00 77,40 78,00
864 886 955 965 975	34,00 34,90 37,60 38,00 38,40	1895 1915 1930 1956 1992	74,60 75,40 76,00 77,00 78,40	406 414 432 457 483	16,00 16,30 17,00 18,00 19,00	1222 1244 1262 1270 1285	48,10 49,00 49,70 50,00 50,60	1992 2083 2155 2210 2337	78,40 82,00 84,80 87,00 92,00
990 1016 1080 1092 1096	39,00 40,00 42,50 43,00 43,10	2083 2155	82,00 84,80	508 559 584 610 660	20,00 22,00 23,00 24,00 26,00	1301 1309 1316 1321 1333	51,20 51,50 51,80 52,00 52,50	2489	98,00
1168 1194 1200 1222 1230	46,00 47,00 47,20 48,10 48,40			711 723 737 762 813	28,00 28,50 29,00 30,00 32,00	1355 1371 1397 1428 1439	53,40 54,00 55,00 56,20 56,70		
1262 1270 1285 1290 1301	49,70 50,00 50,60 50,80 51,20			836 864 914 955 965	32,90 34,00 36,00 37,60 38,00	1475 1549 1600 1651 1663	58,10 61,00 63,00 65,00 65,50		
1309 1316 1321 1333 1371	51,50 51,80 52,00 52,50 54,00			1016 1092 1105 1110 1123	40,00 43,00 43,50 43,70 44,20	1752 1780 1854 1895 1910	69,00 70,00 73,00 74,60 75,20		

Hinweis: Individuell gestaltete Rippenbänder können sich von dem Standardaufbau unterscheiden. Bitte wenden Sie sich an unsere Ingenieure der Anwendungstechnik!

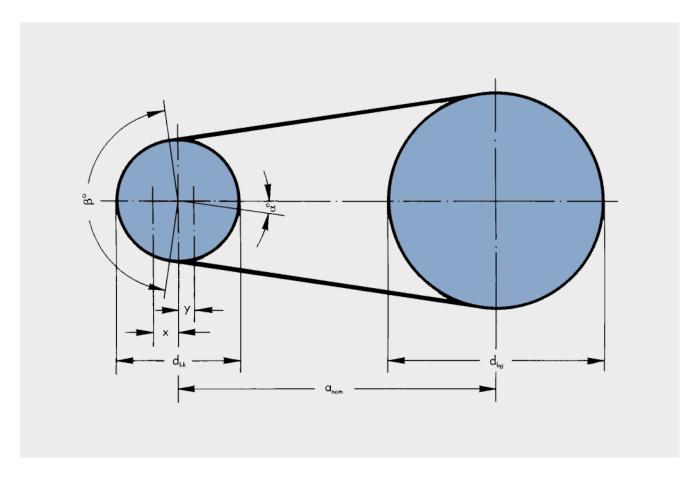
Zwischenlängen auf Anfrage. Maximale Anzahl der Rippen: Wenden Sie sich bitte an unsere Ingenieure der Fachabteilung Anwendungstechnik. Das Profil PH ist keine Lagerware.

Bestellbeispiel:

für ein 5-rippiges Rippenband im Profil PJ mit der Bezugslänge 660 $\rm L_b$: optibelt RB 5 PJ 660 $\rm L_b$

STANDARDSORTIMENT RIPPENBÄNDER

		Profi	il PK			Prof	fil PL	Profi	il PM
	länge L _b	Bezugsl			länge L _b		länge L _b	Bezugs	länge L _b
[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]
630• 648 698 730 775	24,80 25,50 27,50 28,70 30,50	1290 • 1321 • 1330 1345 1371 •	50,80 52,00 52,40 53,00 54,00	2515• 2845•	99,00 112,00	954 991 1075 1194 1270	37,50 39,00 42,30 47,00 50,00	2286 2388 2515 2693 2832	90,00 94,00 99,00 106,00 111,50
800 812 830 865 875	31,50 32,00 32,70 34,00 34,50	1397• 1439• 1460 1520 1560	55,00 56,70 57,50 59,80 61,40			1333 1371 1397 1422 1562	52,50 54,00 55,00 56,00 61,50	2921 3010 3124 3327 3531	115,00 118,50 123,00 131,00 139,00
890 913 920 940 954	35,00 36,00 36,20 37,00 37,60	1570 1600• 1655 1690 1755	61,80 63,00 65,20 66,50 69,10			1613 1664 1715 1764 1803	63,50 65,50 67,50 69,50 71,00	3734 4089 4191 4470 4648	147,00 161,00 165,00 176,00 183,00
962 990 1015 1080 1090	37,80 39,00 40,00 42,50 43,00	1854• 1885 1930• 1956• 1980	73,00 74,20 76,00 77,00 78,00			1841 1943 1981 2020 2070	72,50 76,50 78,00 79,50 81,50	5029 5410 6121 6883• 7646•	198,00 213,00 241,00 271,00 301,00
1125 1150 1165 1190 1200•	44,30 45,30 45,90 46,80 47,20	2030 2050 2080 2120 2145	79,90 80,70 82,00 83,50 84,40			2096 2134 2197 2235 2324	82,50 84,00 86,50 88,00 91,50	8408 • 9169 • 9931 • 10693 • 12217 •	331,00 361,00 391,00 421,00 481,00
1222• 1230• 1245 1270• 1285•	48,10 48,40 49,00 50,00 50,60	2170 2235• 2255 2362• 2460	85,40 88,00 88,80 93,00 96,90			2362 2476 2515 2705 2743	93,00 97,50 99,00 106,50 108,00	13741• 15266•	541,00 601,00
						2845 2895 2921 2997 3086	112,00 114,00 115,00 118,00 121,50		
						3124 3289 3327 3492 3696	123,00 129,50 131,00 137,50 145,50		
						4051 4191 4470 4622 5029 5385	159,50 165,00 176,00 182,00 198,00 212,00		
						6096	240,00		


Hinweis: Individuell gestaltete Rippenbänder können sich von dem Standardaufbau unterscheiden. Bitte wenden Sie sich an unsere Ingenieure der Anwendungstechnik!

Zwischenlängen auf Anfrage. Maximale Anzahl der Rippen: Wenden Sie sich bitte an unsere Ingenieure der Fachabteilung Anwendungstechnik. • Keine Lagerware

BERECHNUNG ERKLÄRUNG DER FORMELZEICHEN

a = Achsabstand	[mm]	n_g = Drehfrequenz der großen Scheibe [min ⁻¹]
a _{nom} = Achsabstand, mit einer Standardriemenläng		n_k = Drehfrequenz der kleinen Scheibe [min ⁻¹]
errechnet	[mm]	n ₁ = Drehfrequenz der treibenden Scheibe [min ⁻¹]
c ₁ = Winkelfaktor		n ₂ = Drehfrequenz der getriebenen Scheibe [min ⁻¹]
c ₂ = Belastungsfaktor		P = vom Rippenband zu übertragende Leistung [kW]
c ₃ = Längenfaktor		P_B = Berechnungsleistung [kW]
d _{bg} = Bezugsdurchmesser der großen Scheibe	[mm]	P _N = Nennleistung je Rippe [kW]
d _{bk} = Bezugsdurchmesser der kleinen Scheibe	[mm]	s = Rippenabstand [mm]
d _{b1} = Bezugsdurchmesser der treibenden Scheibe	[mm]	S _a = Mindest-Achskraft im statischen Zustand [N]
d _{b2} = Bezugsdurchmesser der getriebenen Scheibe	[mm]	T = Mindest-Trumkraft im statischen Zustand
E = Eindrücktiefe je 100 mm Trumlänge	[mm]	je Rippe [N]
E _a = Eindrücktiefe des Trums	[mm]	v = Riemengeschwindigkeit [m/s]
f = Prüfkraft je Rippe	[N]	x = Mindestverstellweg des Achsabstandes a _{nom}
h = Riemenhöhe	[mm]	zum Spannen und Nachspannen des Rippenbandes [mm]
h_b = Bezugs-Linien-Differenz	[mm]	y = Mindestverstellweg des Achsabstandes a _{nom}
i = Übersetzung		zum zwanglosen Äuflegen des Rippenbandes [mm]
k = Konstante zur Berechnung der Zentrifugalkraft		z = Anzahl der Rippen
L = Trumlänge	[mm]	α = Trumneigungswinkel = $90^{\circ} - \frac{\beta}{2}$ °[Grad]
L _{bSt} = Standard-Bezugslänge des Rippenbandes	[mm]	β = Umschlingungswinkel an der kleinen
L _{bth} = errechnete Bezugslänge des Rippenbandes	[mm]	Scheibe °[Grad]

BERECHNUNG OPTIBELT-NENNLEISTUNG P_N – WINKELFAKTOR c_1

Für die OPTIBELT-Nennleistungen P_N der Tabellen 5 bis 9 wurde eine international übliche Grundformel verwendet. Sie beinhaltet Werkstoffkonstanten, die entsprechend den Gepflogenheiten herstellerabhängig eingesetzt werden müssen. Diese P_N-Leistungsformel beruht auf der Grundlage eines Trumspannungsverhältnisses zwischen Last- und Leertrum. Als Bezugsgröße bei der Festlegung der Nennleistung P_N wird die kleinste belastete Scheibe eines Antriebssystems zugrunde gelegt. Daraus ergibt sich, dass der jeweilige P_N-Wert unter Berücksichtigung

- des Bezugsdurchmessers der kleinen Scheibe d_{bk}
- der Drehfrequenz der kleinen Scheibe nk
- der Übersetzung i
- der Annahme eines Umschlingungswinkels an der kleinen Scheibe von $\beta = 180^{\circ}$
- einer profilabhängigen Basislänge errechnet wird.

Um den wirklichen Antriebsdaten, bezogen auf Umschlingungswinkel und verwendete Rippenbandlänge, gerecht zu werden, sind die Korrekturwerte Winkelfaktor c1 und Längenfaktor c₃ eingeführt worden. Bei Zwischenwerten können die Nennleistungen durch lineare Interpolation ermittelt werden.

Der Winkelfaktor c₁ korrigiert den Leistungswert P_N, wenn der Umschlingungswinkel kleiner als 180° ist, da der P_N-Wert unter Berücksichtigung des Umschlingungswinkels β = 180° an der kleinen Scheibe d_{bk} bestimmt wurde.

Tabelle 1

Zwischenwerte sind linear zu interpolieren!

BERECHNUNG LÄNGENFAKTOR c₃

Der Längenfaktor c3 berücksichtigt die Häufigkeit der Biegewechsel des eingesetzten Rippenbandes, bezogen auf die profilabhängige Bezugslänge.

Daraus ergibt sich folgende Abhängigkeit: verwendete Rippenbandlänge > Bezugslänge c $_3$ > 1,0 verwendete Rippenbandlänge = Bezugslänge c $_3$ = 1,0 verwendete Rippenbandlänge < Bezugslänge c $_3$ < 1,0

$$c_3 = 1 + \left[\left(\frac{L_b}{L_{bo}} \right)^{0.09} - 1 \right] \cdot 2.4$$

L_b = eingesetzte Bezugslänge L_{bo} = Bezugslänge

Tabelle 2

	Prof	il PH		Profil PJ					
Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃		
559 698 735 762 813	0,96 0,96 0,97 0,98 1,00	1956 1992 2083 2155	1,19 1,20 1,21 1,22	280 330 356 362 381	0,74 0,76 0,78 0,78 0,79	1309 1316 1321 1333 1355	1,05 1,05 1,05 1,05 1,06		
858 864 886 914 955	1,01 1,01 1,01 1,02 1,03			406 414 432 457 483	0,80 0,81 0,82 0,83 0,84	1371 1397 1428 1439 1475	1,06 1,06 1,07 1,07 1,08		
965 975 990 1016 1080	1,03 1,03 1,03 1,04 1,06			508 559 584 610 660	0,85 0,87 0,88 0,89 0,90	1549 1600 1651 1663 1752	1,09 1,10 1,10 1,10 1,12		
1092 1096 1168 1194 1200	1,06 1,06 1,07 1,08 1,08			711 723 762 813 836	0,92 0,92 0,93 0,95 0,95	1780 1854 1895 1910 1915	1,12 1,13 1,13 1,14 1,14		
1222 1230 1262 1270 1285	1,08 1,09 1,09 1,09 1,10			864 914 955 965 1016	0,96 0,97 0,98 0,98 1,00	1930 1956 1965 1981 1992	1,14 1,14 1,14 1,14 1,14		
1301 1309 1316 1321	1,10 1,10 1,10 1,10			1105 1110 1123 1130	1,01 1,01 1,02 1,02	2083 2155 2210 2337 2489	1,16 1,17 1,17 1,18 1,20		
1371 1397 1439 1475	1,11 1,11 1,12 1,13			1168 1194 1200 1222	1,03 1,03 1,03 1,04				
1600 1854 1895 1915 1930	1,15 1,18 1,18 1,19 1,19			1244 1262 1270 1285 1301	1,04 1,04 1,04 1,05 1,05				
1285 1290 1301 1309 1316 1321 1333 1371 1397 1439 1475 1600 1854 1895 1915	1,10 1,10 1,10 1,10 1,10 1,10 1,11 1,11			1016 1092 1105 1110 1123 1130 1150 1168 1194 1200 1222 1244 1262 1270 1285	1,00 1,01 1,01 1,02 1,02 1,02 1,03 1,03 1,03 1,04 1,04 1,04 1,04 1,04 1,05	1992 2083 2155 2210 2337	1,14 1,16 1,17 1,17 1,18		

BERECHNUNG LÄNGENFAKTOR c₃

Tabelle 2

e 2								
P	Profil PK			Profil PL			Profi	l PM
slänge b c ₃ m]	Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃	Bezugslänge L _b [mm]	c ₃
b c ₃	L _b [mm]	1,04 1,05 1,05 1,05 1,06 1,06 1,07 1,09 1,09 1,10 1,12 1,13	L _b	0,83 0,84 0,86 0,88 0,89 0,90 0,91 0,91 0,93 0,94 0,95 0,96 0,96 0,97 0,98 0,98 0,99 0,99 1,00 1,01 1,01 1,01 1,02 1,02 1,03 1,03 1,05 1,05 1,07 1,07 1,07 1,07 1,07 1,07 1,07 1,08 1,08 1,09 1,10 1,11 1,11 1,12	Lb	1,14 1,15 1,16 1,17 1,19 1,21 1,24		0,87 0,88 0,89 0,91 0,92 0,93 0,94 0,95 0,96 0,98 1,00 1,01 1,02 1,04 1,06 1,08 1,11 1,13 1,16 1,18 1,19 1,21 1,24 1,27 1,30

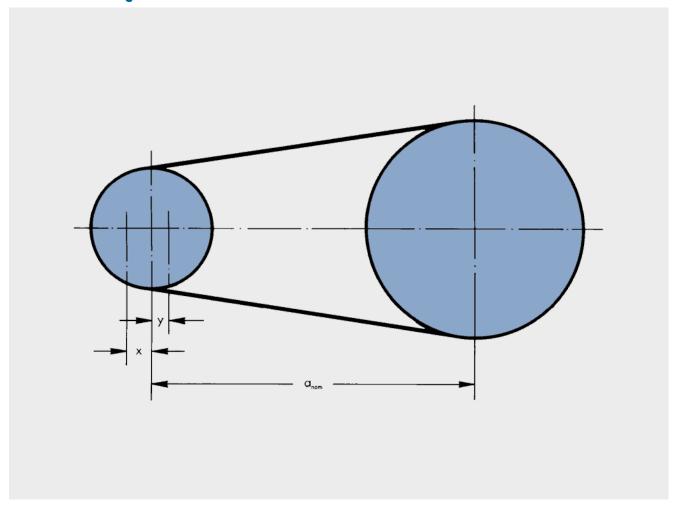

BERECHNUNG MINDESTVERSTELLWEGE x/y DES ACHSABSTANDES anom

Tabelle 3

Bezugslänge	Mindestverstell- weg x [mm] -	Mindestverstellweg y [mm] – zum zwanglosen Auflegen						
[mm]	zum Spannen und Nachspannen	Profil PH	Profil PJ	Profil PK	Profil PL	Profil PM		
≤ 500	10	10	10	_	-	_		
> 500 ≤ 1000	15	15	15	20	25	_		
> 1000 ≤ 1500	20	15	15	20	25	_		
> 1500 ≤ 2000	25	15	15	20	25	_		
> 2000 ≤ 2500	30	20	20	20	25	40		
> 2500 ≤ 3000	35	20	20	25	30	40		
> 3000 ≤ 4000	45	_	-	25	30	45		
> 4000 ≤ 5000	55	_	_	30	35	45		
> 5000 ≤ 6000	65	_	_	30	35	50		
> 6000 ≤ 7500	85	_	-	-	-	55		

Mindestverstellweg

BERECHNUNG **BELASTUNGSFAKTOR c2**

Der Belastungsfaktor c₂ berücksichtigt die tägliche Betriebsdauer und die Art der Antriebs- und Arbeitsmaschine. Er gilt ausschließlich für 2-Scheiben-Antriebe. Sonstige Gegebenheiten, wie Antriebe mit Spann-, Führungs- und Umlenkrollen, sind nicht berücksichtigt. Auf den Seiten 33 bis 34 sind die entsprechenden Konstruktionsgrundlagen für Antriebe mit mehr als zwei Scheiben aufgeführt. Extreme Betriebsbedingungen, wie z.B. aggressiver Staub, besonders hohe Temperaturbelastungen oder Einfluss der verschiedensten Medien, sind **nicht** berücksichtigt. Da es praktisch unmöglich ist, jede denkbare Kombination Antriebsmaschine/Arbeitsmaschine/Betriebsbedingungen in eine normgerechte Kurzfassung zu bringen, sind die Belastungsfaktoren Richtwerte. In Sonderfällen, z. B. bei erhöhtem Anlaufmoment (Direkteinschaltung bei Ventilatoren), bei Antrieben mit hoher Schalthäufigkeit, bei außergewöhnlicher Stoßbelastung, bei erheblicher Massenbeschleunigung oder -verzögerung, ist der Belastungsfaktor zu erhöhen.

Erfahrungswert:

Bei einem Anlaufmoment > 1,8-fach ist der Wert durch 1,5 zu dividieren, um den Mindest-Belastungsfaktor c₂ zu ermitteln; z.B. Anlaufmoment $M_A = 3.0$; c_2 gewählt 2.0. Lassen Sie sich bei der besonderen Problematik durch unsere Ingenieure der Anwendungstechnik beraten.

Tabelle 4

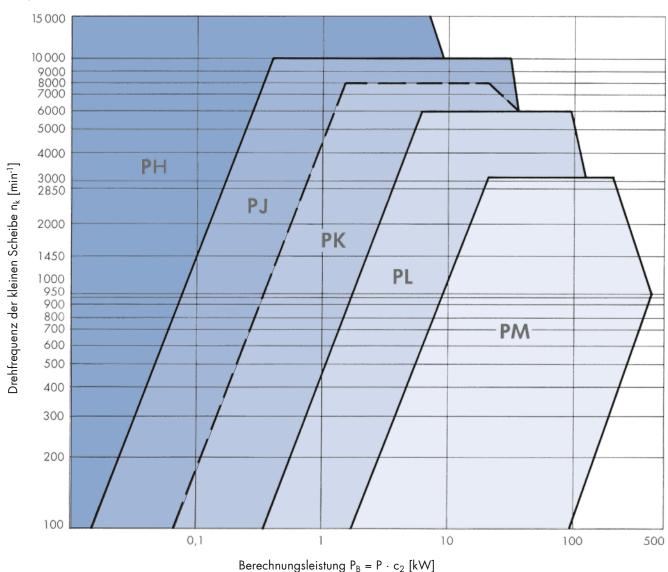
Beispiele von Antriebsmaschinen

Wechsel- und Drehstrommotoren mit normalem Anlaufmoment (bis 1,8-fachem Nennmoment), z. B. Synchron- und Einphasenmotoren mit Anlasshilfsphase, Drehstrommotoren mit Direkteinschaltung, Stern-Dreieck-Schaltung oder Schleifring-Anlasser, Gleichstromnebenschlussmotoren, Verbrennungsmotoren und Turbinen n > 600 min⁻¹

Wechsel- und Drehstrommotoren mit hohem Anlaufmoment (über 1,8-fachem Nennmoment), z. B. Einphasenmotoren mit hohem Anlaufmoment, Gleichstromhauptschlussmotoren in Serienschaltung und Kompound, Verbrennungsmotoren und Turbinen n ≤ 600 min⁻¹

			und Turbinen n > 600 min ⁻¹					
			für tägli	che Betrie	bsdauer (S			
Beispiele von A	Beispiele von Arbeitsmaschinen		über 10 bis 16	über 16	bis 10	über 10 bis 16	über 16	
Gleichmäßiger Betrieb, nur geringe zu beschleunigen- de Massen	Rührwerke für Flüssigkeiten mit gleichbleibender Konsistenz, Generatoren bis 0,05 kW, kleine Transportbänder für leichtes Gut, Ventilatoren bis 0,05 kW, Rotationspumpen bis 0,05 kW	1,1	1,1	1,2	1,1	1,2	1,3	
Gleichmäßiger Betrieb, kleine zu beschleunigende Massen	Transportbänder für leichtes Gut, Ventilatoren von 0,06 bis 0,1 kW, Rotationspumpen von 0,06 bis 0,1 kW	1,1	1,2	1,3	1,2	1,3	1,4	
Ungleichmäßiger Betrieb, mittlere zu beschleunigen- de Massen	Schwingsiebe, Grubenlüfter, Rührwerke für Flüssigkeiten mit wechselnder Konsistenz, Druckmaschinen, Schneckenpressen, Holzbearbeitungsmaschinen, Transportbänder für schweres Gut, Elevatoren, Fließbänder, Ventilatoren über 0,08 kW, Bohrmaschinen, Fräsmaschinen, Schleifmaschinen, leichte Drehbänke, Bäckereimaschinen, Ringspinnmaschinen, Rotationspumpen über 0,11 kW, Wäschereimaschinen	1,2	1,3	1,4	1,3	1,4	1,5	
Ungleichmäßiger Betrieb, mittlere zu beschleunigen- de Massen und Stöße	Kneter, Mühlen, Mischwerke, Pumpen, Trockentrommeln, Mühlen allgemein, Zentrifugen, Rührwerke für plastische Massen mit wechselnder Konsistenz, Becherförderer, Schraubengebläse, Langhobelmaschinen, Webstühle	1,3	1,4	1,5	1,4	1,5	1,6	
Ungleichmäßiger Betrieb, große zu beschleunigen- de Massen und Stöße	Papiermaschinen, Plattenbänder, Schlackenmühlen, Kalander, Bohrwerke, schwere Drehbänke, Pressen, Profiliermaschinen, Stanzen, Scheren, Ziehbänke, Kolbenpumpen bis 2 Zylinder	1,4	1,5	1,6	1,5	1,7	1,8	
Ungleichmäßiger Betrieb, sehr große zu beschleunigende Massen, besonders starke Stöße	Bagger, Mahlwerke hoch belastet, Walzwerke, Mischer, Sägegatter, Kalander	1,6	1,7	1,8	1,6	1,8	2,0	

BERECHNUNG RICHTLINIEN FÜR DIE WAHL DES RIPPENBANDPROFILS


Mit dem folgenden Diagramm ist es möglich, unter Berücksichtigung von Wirtschaftlichkeit und Baugröße das jeweils geeignete Rippenbandprofil zu finden. Eine optimale Leistungsausnutzung sowie Wirtschaftlichkeit werden durch die Wahl möglichst großer Scheibendurchmesser, bezogen auf das jeweilige Profil, erreicht. Zu beachten sind die Grenzwerte der zulässigen Umfangsgeschwindigkeit für Rippenbänder:

Profil PH $v_{max} = 60 \text{ m/s}$ Profil PJ $v_{max} = 60 \text{ m/s}$ Profil PK $v_{max} = 50 \text{ m/s}$ Profil PL $v_{max} = 40 \text{ m/s}$ Profil PM $v_{max} = 35 \text{ m/s}$

Bei höheren Umfangsgeschwindigkeiten wenden Sie sich an unsere Ingenieure der Anwendungstechnik.

Erfahrungsgemäß ist der Bereich der Mindest-Scheibendurchmesser zu vermeiden. Diese Antriebe benötigen eine größere Anzahl Rippen, dadurch breite Scheiben und sind deshalb kostenintensiv. Die Rippenbandbreite soll nicht größer sein als der Bezugsdurchmesser der kleinen Scheibe. In diesem Grenzbereich empfiehlt es sich, die Antriebsauslegung auch mit dem nächstkleineren Profil durchzuführen, da bei Verwendung gleicher Scheibendurchmesser das kleinere Profil zumeist Kosten und Raum spart. Gleichermaßen ist eine Überprüfung ratsam, wenn im verwendeten Auswahldiagramm der Schnittpunkt im Grenzbereich zweier Profile liegt.

Diagramm 1

BERECHNUNG FORMELN UND BERECHNUNGSBEISPIEL

Antriebsmaschine

Betriebsbedingungen

Tägliche Betriebsdauer: 8 Stunden Anzahl der Schaltungen: 20 pro Tag Normale Raumtemperatur, kein Einfluss von Öl und Wasser

Arbeitsmaschine

Achsabstand: zwischen 350 und 400 mm

wählbar

Scheibendurchmesser: d_{b1} ≤ 140 mm

Schleifspindel P = 13 kW

 $n_2 = 3100 \pm 100 \text{ min}^{-1}$ Anlauf: im Leerlauf

Elektromotor P = 13 kW $n_1 = 2440 \text{ min}^{-1}$ Anlaufart: direkt Anlaufmoment $M_A = 2.7 M_N$

Formeln

Belastungsfaktor

c₂ aus Tabelle 4, Seite 20

Berechnungsleistung

 $P_B = P \cdot c_2$

Wahl des Rippenbandprofils

aus Diagramm 1, Seite 21

Übersetzung

$$i = \frac{n_1}{n_2} = \frac{d_{w2}}{d_{w1}} = \frac{d_{b2} + 2 \ h_b}{d_{b1} + 2 \ h_b}$$

h_b siehe Seite 32

Berechnungsbeispiel

 $P_B = 13 \cdot 1,6 = 20,80 \text{ kW}$

$$c_2 = 1,6$$

Profil PL

$$i = \frac{2440}{3173} = 0,769$$

Bezugsdurchmesser der Keilrillenscheiben

d_{b1} siehe Seite 45

$$d_{b2} = d_{b1} \cdot i + 2 h_b (i - 1)$$

wenn d_{b2} bekannt:

$$d_{b1} = \frac{d_{b2}}{i} + 2 h_b \left(\frac{1}{i} - 1 \right)$$

$$d_{b2} = 123 \text{ mm} \cdot 0.769 + 2 \cdot 3.5 (0.769 - 1) = 92.97 \text{ mm}$$

$$d_{b2}$$
 = 93 mm – siehe Seite 44

BERECHNUNG

FORMELN UND BERECHNUNGSBEISPIEL

Formeln

Überprüfung der Drehzahl an der Arbeitsmaschine

$$i_{vorh}$$
 = $\frac{d_{w2}}{d_{w1}}$ = $\frac{d_{b2} + 2 h_b}{d_{b1} + 2 h_b}$

$$n_{2 \text{ vorh}} = \frac{n_1}{i_{\text{vorh}}}$$

Achsabstand (vorläufige Wahl)

Empfehlung:
$$a > 0.7 (d_{bg} + d_{bk})$$

$$a < 2$$
 $(d_{bg} + d_{bk})$

Bezugslänge des Rippenbandes

$$L_{bth} \approx 2 \ \alpha + \ 1,57 \ (d_{bg} + d_{bk}) \ + \frac{(d_{bg} - d_{bk})^2}{4 \ \alpha}$$

$$L_{bth} = 2 \text{ a} \cdot \sin \frac{\beta}{2} + \frac{\pi}{2} (d_{bg} + d_{bk}) + \frac{\alpha \cdot \pi}{180^{\circ}} (d_{bg} - d_{bk})$$

Berechnungsbeispiel

$$i_{vorh} = \frac{93 + 2 \cdot 3.5}{123 + 2 \cdot 3.5} = 0.769$$

$$n_{2 \text{ vorh}} = \frac{2440}{0.769} = 3173 \text{ min}^{-1}$$
 Forderung: $3100 \pm 100 \text{ min}^{-1}$ erfüllt

a = 380 mm vorläufig gewählt

$$L_{bth} \approx 2 \cdot 380 + 1,57 \cdot (123 + 93) + \frac{(123 - 93)^2}{4 \cdot 380} \approx 1099,7 \text{ mm}$$

nächste Standard-Bezugslänge von Seite 14 gewählt $L_{bSt} = 1075 \text{ mm}$

Achsabstand

Berechnung aus L_{bSt} und L_{bth}

(wenn
$$L_{bSt} > L_{bth}$$
) $a_{nom} \approx a + \frac{L_{bSt} - L_{bth}}{2}$

(wenn
$$L_{bSt} < L_{bth}$$
) $\alpha_{nom} \approx \alpha - \frac{L_{bth} - L_{bSt}}{2}$

$$\alpha_{nom} = \frac{L_{bSt} - \frac{\pi}{2} \left(d_{bg} + d_{bk}\right)}{4} +$$

$$\sqrt{ \left[\frac{L_{bSt} - \frac{\pi}{2} (d_{bg} + d_{bk})}{4} \right]^2 - \frac{(d_{bg} - d_{bk})^2}{8} }$$

$$a_{nom} \approx 380 - \frac{1099,7 - 1075}{2} \approx 367,65 \text{ mm}$$

Mindestverstellwege x/y des Achsabstandes anom

 $x \ge 20 \text{ mm} / y \ge 25 \text{ mm}$

Geschwindigkeit

$$v = \frac{d_{wk} \cdot n_k}{19100} = \frac{(d_{bk} + 2 \cdot h_b) \cdot n_k}{19100}$$

$$v = \frac{(93 + 2 \cdot 3.5) \cdot 3173}{19100} = 16.61 \text{ m/s}$$

BERECHNUNG

FORMELN UND BERECHNUNGSBEISPIEL

Formeln

Winkelfaktor und Umschlingungswinkel

$$d_{bg} - d_{bk}$$

β° angenähert und c₁ aus Tabelle 1, Seite 16

genau:
$$\cos \frac{\beta}{2} = \frac{d_{bg} - d_{bk}}{2 a_{nom}}$$

Längenfaktor

c₃ aus Tabelle 2, Seite 17

$$P_{N} \text{ für } \begin{cases} d_{bk} = 93 \text{ mm} \\ n_{k} = 3173 \text{ min}^{-1} \\ i* = \frac{1}{0.769} = 1,3 \end{cases} \qquad \begin{array}{ll} \text{Profil PL} \\ \text{aus Tabelle 8, Seite 29} \end{cases}$$

Bedingung i ≥ 1 zur Auswahl des Übersetzungszuschlags

Berechnungsbeispiel

$$\frac{123 - 93}{368} = 0.082$$

$$\beta \approx 175^{\circ}$$

$$c_1 = 1.0$$
 linear interpoliert

$$c_3 = 0.86$$

Anzahl der Rippen

$$z = \frac{P \cdot c_2}{P_N \cdot c_1 \cdot c_3}$$

$$z = \frac{13 \cdot 1.6}{2.48 \cdot 1.0 \cdot 0.86} = 9.74$$

 $P_N = 2,28 + 0,2 = 2,48 \text{ kW}$

Auslegung:

1 Stück optibelt RB Rippenband 10 PL 1075

Mindest-Trumkraft im statischen Zustand je Rippe

$$T \approx \frac{500 \cdot \left(2,03-c_1\right) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2 \begin{array}{c} Profil & k & \text{$|$ F[N]$}\\ PH & 0,005 & 3,0\\ PJ & 0,009 & 5,0\\ PK & 0,020 & 7,5\\ PL & 0,036 & 10,0\\ PM & 0,123 & 25,0\\ \end{array}$$

$$T \approx \frac{500 \cdot (2,03 - 1,0) \cdot 20,8}{1,0 \cdot 10 \cdot 16,6} + 0,036 \cdot 16,6^2 \approx 75 N$$

Mindest-Achskraft im statischen Zustand

$$S_{\alpha} \approx 2 \text{ T} \cdot \sin \frac{\beta}{2} \cdot z$$

$$S_{\alpha} \approx 2 \cdot 75 \cdot 0.9986 \cdot 10 \approx \textbf{1500 N}$$

Eindrücktiefe des Trums

$$E_{\alpha} \approx \frac{E \cdot L}{100}$$

E aus Diagramm 2, Seite 49

$$L = a_{nom} \cdot \sin \frac{\beta}{2}$$

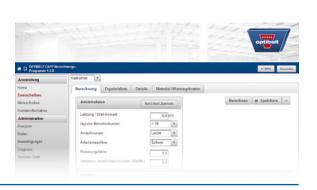
Erläuterung siehe Kapitel Vorspannung, Seite 48

$$E_{\alpha} \approx \frac{2.5 \cdot 367.0}{100} \approx 9 \text{ mm}$$

 $E \approx 2.5 \text{ mm}$

$$L = 367,6 \cdot 0,9986 = 367,0 \text{ mm}$$

ANTRIEBSBERECHNUNG


optibelt CAP

Der Antrieb ist auszulegen mit:

- optibelt RB Rippenband 10 PL 1075 Lb

- optibelt RBS Keilrippenscheibe für Taper-Buchsen TB 10 PL 123
 optibelt TB Taper-Buchse 2012 (Bohrungsdurchmesser 14-50 mm)
 optibelt RBS Keilrippenscheibe für Taper-Buchsen TB 10 PL 93
 optibelt TB Taper-Buchse 1610 (Bohrungsdurchmesser 14-42 mm)

Abweichungen/Hinweise

Antriebsmaschine	:	Elektro	omotor	
Arbeitsmaschine	:			
Berechnungsleistung	PB:	20,80	kW	
Leistung Antriebsmaschine	P:	13,00	kW	
Drehmoment treibende Scheibe	M:	51	Nm	
Antriebsdrehzahl	n ₁ :	2440	1/min	
Abtriebsdrehzahl effektiv	n ₂ :	3172	1/min	-55 1/min
	d _{b1} :	123,00	mm	
	d _{b2} :	93,00	mm	
	:	1075	mm	
Achsabstand effektiv	a:	367,55	mm	-12,452 mm
Übersetzung effektiv	i:	0,77		1,7 %
Verstellweg zum Auflegen	y:	25,00	mm	
Verstellweg zum Spannen	x:	20,00	mm	
Belastungsfaktor effektiv	c ₂ :	1,64		
Riemengeschwindigkeit	v:	16,61	m/s	
Biegewechsel	f_B :	30,90	1/s	
Nennleistung je Riemen	P _N :	2,49	kW	
Winkelfaktor	c ₁ :	1,00		
Längenfaktor	c ₃ :	0,86		
Umschlingungswinkel kleine Scheibe	β:	175,32	0	
Scheibenkranzbreite	b ₂ :	48,90	mm	
Trumlänge	I:	367,24	mm	
Errechnete Anzahl der Riemen	zth:	9,74		bei vorgegebenem c ₂ = 1,60
Gewicht Antrieb	:	_	kg	
Statische Achskraft, Erstmontage	Sast:	1941	_	
Statische Achskraft, gelaufene Riemen	Sast:	1493	Ν	
Dynamische Achskraft	Sadyn:	1308	Ν	

Methoden Vorspannungsein	stellung	Erstmontage	Betriebsspannung	3
bei vorgegebenem c ₂ =		1,60	Neue Riemen	Gelaufene Riemen
1. OPTIKRIK II	statische Trumk	raft pro Keilriemen:	971 N	747 N
2. Eindrücktiefe mit Vorspan	ınmessgerät	Prüfkraft:	100 N	100 N
		Eindrücktiefe:	7,34 mm	8,45 mm
3. Längenaddition pro 1000	O mm Riemenlänge	:	2,85 mm	2,11 mm
4. optibelt TT 3 / TT MINI F	requenz-Messgerät	Frequenz:	70,72 1/s	62,02 1/s

PROFIL PH NENNLEISTUNG P_N [kW] PRO RIPPE FÜR β = 180° UND L_b = 813 mm

Tabelle 5

Tab	elle 5															
n/s]	n _k				Bezug	sdurchme	sser der k	leinen Sch	neibe d _{bk}					Übersetzungsz pro Rippe für 1 01 1 06	Uberse	etzung i
>	[min ⁻¹]	13	1 <i>7</i>	20	25	31,5	35,5	40	45	50	63	71	80	bis bis 1,05 1,26	bis 1,57	, ,,,,,
[\$/w] > ①	700 950 1450 2850 100 300 500 700 900 1100 1200 1300 1400 1500 1600 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3100 3200 3100 3200 3400 3500 3600 3700 3800 3600 3700 3800 3900 4000 4000 4000 4000 4000 4000 40	0,01 0,01 0,02 0,03 0,00 0,01 0,01 0,01 0,02 0,02 0,02 0,02	0,02 0,02 0,03 0,05 0,00 0,01 0,02 0,02 0,02 0,03 0,03 0,03 0,03 0,04 0,04 0,04 0,04	0,02 0,03 0,04 0,07 0,03 0,03 0,03 0,03 0,04 0,04 0,05 0,05 0,06 0,06 0,06 0,06 0,07 0,07 0,07 0,07	0,03 0,04 0,04 0,01 0,01 0,01 0,02 0,03 0,04 0,04 0,05 0,05 0,06 0,06 0,07 0,07 0,07 0,07 0,08 0,08 0,08 0,09 0,09 0,09 0,10 0,11 0,11 0,12 0,13 0,13 0,13 0,13 0,14 0,14 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15	0,04 0,05 0,08 0,14 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,07 0,08 0,09 0,10 0,11 0,11 0,12 0,13 0,13 0,13 0,13 0,14 0,15 0,15 0,15 0,15 0,15 0,17 0,17 0,17 0,17 0,17 0,18 0,18 0,19 0,19 0,20 0,21 0,22 0,23 0,24 0,24 0,24	0,05 0,06 0,07 0,06 0,07 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,13 0,14 0,14 0,15 0,16 0,17 0,17 0,17 0,18 0,18 0,19 0,19 0,19 0,20 0,20 0,20 0,21 0,22 0,23 0,24 0,26 0,26 0,26 0,26 0,27	0,05 0,07 0,10 0,01 0,02 0,04 0,05 0,07 0,07 0,08 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,16 0,17 0,17 0,18 0,18 0,19 0,20 0,20 0,21 0,21 0,22 0,23 0,24 0,25 0,25 0,27 0,27 0,29 0,20 0,21 0,22 0,23 0,24 0,25 0,27 0,20 0,21 0,22 0,23 0,24 0,25 0,27 0,20 0,21 0,22 0,23 0,24 0,25 0,27 0,20 0,21 0,22 0,23 0,24 0,24 0,25 0,26 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27	0,06 0,08 0,11 0,01 0,03 0,04 0,06 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,24 0,25 0,26 0,27 0,27 0,27 0,29 0,30 0,31 0,33 0,33 0,33 0,33 0,33 0,33	0,07 0,09 0,13 0,01 0,03 0,05 0,07 0,08 0,10 0,11 0,12 0,13 0,14 0,16 0,16 0,17 0,18 0,19 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,27 0,27 0,29 0,29 0,30 0,31 0,32 0,33 0,33 0,34 0,35 0,38 0,39 0,39 0,39 0,39 0,30 0,39 0,39 0,39	0,09 0,11 0,30 0,02 0,04 0,06 0,09 0,11 0,13 0,14 0,15 0,16 0,17 0,18 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,30 0,31 0,32 0,33 0,34 0,35 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,40 0,41 0,42 0,43 0,45 0,45 0,45 0,46 0,47 0,48 0,45 0,48 0,45 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48	0,10 0,13 0,13 0,034 0,02 0,05 0,10 0,12 0,15 0,16 0,17 0,18 0,19 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 0,33 0,34 0,35 0,37 0,39 0,39 0,40 0,41 0,42 0,45 0,46 0,47 0,49 0,49 0,59 0,59 0,59	0,11 0,15 0,21 0,08 0,01 0,14 0,15 0,17 0,18 0,21 0,22 0,23 0,24 0,26 0,27 0,28 0,29 0,31 0,32 0,33 0,34 0,35 0,37 0,38 0,37 0,38 0,39 0,40 0,41 0,43 0,44 0,46 0,47 0,53 0,53 0,55 0,55 0,55 0,55 0,55 0,55	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	1,27 bis bis 1,57 bis 1,57 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,0	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01
(3)	5800 6000 6200 6400 6400 6800 7200 7400 7800 8000 8200 9400 9400 9200 9400 9400 10300 10500 11500 12500	0,05 0,05 0,06 0,06 0,06 0,06 0,06 0,06	0,10 0,10 0,10 0,11 0,11 0,11 0,11 0,12 0,12	0,13 0,13 0,14 0,14 0,14 0,15 0,15 0,16 0,17 0,17 0,17 0,18 0,18 0,18 0,19 0,19 0,19 0,20 0,20 0,21 0,21 0,22 0,23 0,24	0,18 0,19 0,19 0,20 0,20 0,21 0,21 0,22 0,23 0,24 0,24 0,25 0,25 0,25 0,26 0,27 0,27 0,28 0,28 0,28 0,29 0,30 0,30 0,30 0,30	0,24 0,26 0,26 0,27 0,28 0,29 0,29 0,30 0,31 0,31 0,33 0,33 0,34 0,35 0,36 0,37 0,38 0,38 0,39 0,40 0,40 0,41 0,43 0,44	0,29 0,30 0,31 0,31 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,47 0,48 0,47 0,48 0,49 0,51 0,52	0,33 0,34 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,45 0,50 0,50 0,51 0,52 0,53 0,54 0,59	0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,50 0,51 0,52 0,53 0,54 0,55 0,55 0,55 0,55 0,56 0,57 0,56 0,60 0,61 0,63 0,63 0,63 0,63	0,43 0,44 0,45 0,46 0,47 0,50 0,51 0,53 0,54 0,55 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,64 0,65 0,67 0,67	0,54 0,56 0,57 0,58 0,60 0,61 0,62 0,63 0,66 0,67 0,69 0,70 0,71 0,72 0,74 0,74 0,74 0,75 0,76 0,77 0,78 0,77 0,78 0,79 0,79 0,79 0,79 0,79 0,79 0,79 0,79	0,61 0,62 0,64 0,65 0,66 0,68 0,70 0,71 0,73 0,74 0,75 0,77 0,78 0,79 0,80 0,81 0,81 0,82 0,83 0,83 0,84 0,83 0,83	0,67 0,69 0,72 0,73 0,75 0,76 0,77 0,80 0,81 0,83 0,83 0,85 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,01 0,01 0,01 0,01 0,02 0,02 0,02 0,02
		10)		20)	v > 00	m/s. vver	iden Sie s	sich an uns		ungsingei	пеоге!	v [m	/s]	
		U			40	,			9	y 10	,			, [III	, "]	

PROFIL PJ NENNLEISTUNG P_N [kW] PRO RIPPE FÜR $\beta = 180^{\circ}$ UND $L_b = 1016 \text{ mm}$

IUD	elle o																				
[s/m] v	n _k [min ⁻¹]	20	25	31,5	35,5	Bez 40	zugsdur 45	chmess 50	er der k	deinen 71	Scheibe 80		nm] 100	112	125	140	160		pe für 1,06 bis	Überse	
	700 950 1450 2850 100 300	0,04 0,05 0,06 0,11 0,01 0,02 0,03	0,05 0,07 0,09 0,16 0,01 0,03	0,07 0,09 0,13 0,23 0,01 0,03	0,08 0,11 0,15 0,28 0,02 0,04	0,10 0,13 0,18 0,32 0,02 0,05	0,11 0,14 0,21 0,38 0,02 0,05 0,08	0,13 0,16 0,24 0,43 0,02 0,06	0,16 0,21 0,31 0,56 0,03 0,08 0,12	0,18 0,24 0,35 0,64 0,03 0,09	0,21 0,28 0,40 0,72 0,04 0,10	0,24 0,31 0,45 0,82 0,04 0,11	0,26 0,35 0,51 0,91 0,05 0,12	0,30 0,39 0,57 1,02 0,05 0,14	0,33 0,44 0,63 1,14 0,06 0,16	0,37 0,49 0,71 1,27 0,06 0,17	0,42 0,56 0,81 1,43 0,07 0,20	,	0,01 0,01	0,01 0,01 0,02	0,01 0,01 0,01 0,02
2	500 700 900 1100 1300 1400 1500 1600 1700 1800 2000 2100 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300	0,04 0,04 0,05 0,06 0,06 0,07 0,07 0,08 0,08 0,08 0,09 0,10 0,11 0,11 0,11 0,11	0,04 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,13 0,14 0,15 0,16 0,16 0,17 0,17 0,18	0,05 0,07 0,10 0,11 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26	0,06 0,08 0,10 0,12 0,13 0,15 0,16 0,17 0,18 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,29 0,30 0,31	0,07 0,10 0,12 0,14 0,15 0,18 0,19 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,30 0,31 0,32 0,33 0,33 0,33 0,35 0,37	0,11 0,11 0,16 0,19 0,20 0,22 0,24 0,25 0,28 0,29 0,30 0,31 0,32 0,34 0,37 0,38 0,37 0,38 0,39 0,40 0,43	0,09 0,13 0,19 0,20 0,23 0,24 0,27 0,29 0,31 0,33 0,34 0,37 0,42 0,43 0,43 0,44 0,44 0,44 0,44 0,44	0,12 0,20 0,24 0,28 0,30 0,32 0,32 0,34 0,36 0,37 0,41 0,43 0,45 0,52 0,53 0,55 0,55 0,55 0,55 0,60 0,63	0,14 0,18 0,28 0,30 0,32 0,34 0,36 0,43 0,45 0,47 0,49 0,51 0,55 0,57 0,63 0,63 0,63 0,68 0,72	0,16 0,26 0,31 0,34 0,39 0,41 0,46 0,48 0,53 0,56 0,60 0,62 0,67 0,67 0,71 0,76 0,78 0,82	0,18 0,20 0,30 0,36 0,34 0,44 0,47 0,55 0,55 0,68 0,71 0,78 0,81 0,88 0,88 0,88 0,93	0,20 0,33 0,40 0,43 0,49 0,52 0,55 0,61 0,67 0,73 0,73 0,79 0,82 0,93 0,93 0,93	0,22 0,337 0,44 0,48 0,555 0,69 0,65 0,69 0,75 0,85 0,88 0,91 0,98 1,01 1,07 1,107	0,25 0,342 0,50 0,548 0,62 0,65 0,673 0,77 0,884 0,91 1,05 1,09 1,125 1,19	0,27 0,37 0,46 0,56 0,60 0,69 0,73 0,72 0,86 0,90 1,06 1,10 1,14 1,21 1,25 1,35 1,35 1,42	0,31 0,42 0,53 0,63 0,68 0,78 0,83 0,93 0,98 1,07 1,11 1,120 1,24 1,29 1,33 1,37 1,41 1,49 1,53 1,53		0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01
3	3300 3400 3500 3600 3700 3800 4000 4100 4200 4400 4500 4500 5000 5100 5300 5400 5700 5800 6000 6400 6400 6400 6400 6400 7200 7400 7400 7400 7400 7400 7400 7	0,12 0,13 0,13 0,13 0,14 0,14 0,14 0,15 0,15 0,16 0,16 0,17 0,17 0,17 0,17 0,18 0,18 0,19 0,20 0,20 0,21 0,22 0,22 0,23	0,18 0,19 0,20 0,21 0,21 0,22 0,23 0,23 0,23 0,24 0,25 0,26 0,26 0,27 0,28 0,29 0,31 0,32 0,33 0,33 0,35 0,35 0,35	0,26 0,28 0,28 0,30 0,31 0,332 0,333 0,335 0,337 0,338 0,340 0,41 0,42 0,44 0,45 0,44 0,45 0,51 0,52 0,534	0,31 0,33 0,33 0,33 0,33 0,33 0,33 0,33	0,37 0,38 0,39 0,41 0,42 0,44 0,44 0,44 0,45 0,55 0,55 0,55 0,55	0,44 0,45 0,46 0,47 0,51 0,55 0,55 0,55 0,55 0,55 0,66 0,66 0,72 0,74 0,78 0,85 0,85 0,88	0,480 0,551 0,552 0,555 0,556 0,557 0,663 0,663 0,664 0,665 0,701 0,774 0,774 0,774 0,802 0,904 0,905	0,65 0,67 0,68 0,70 0,73 0,75 0,78 0,78 0,85 0,88 0,90 0,93 0,94 0,97 1,01 1,15 1,120 1,22 1,22 1,22 1,22 1,22 1,22	0,72 0,76 0,78 0,81 0,83 0,85 0,89 0,90 0,92 0,95 0,97 1,04 1,13 1,18 1,21 1,30 1,32 1,33 1,43 1,43	0,82 0,86 0,86 0,90 0,94 0,98 1,00 1,02 1,06 1,08 1,10 1,14 1,16 1,17 1,21 1,25 1,33 1,36 1,43 1,43 1,45 1,45 1,57 1,62	0,935 0,97 1,00 1,024 1,07 1,13 1,15 1,15 1,22 1,24 1,32 1,32 1,34 1,34 1,45 1,49 1,56 1,65 1,65 1,74 1,74 1,79	1,036 1,08 1,11 1,136 1,18 1,23 1,326 1,333 1,35 1,37 1,42 1,46 1,50 1,56 1,56 1,56 1,56 1,57 1,77 1,80 1,81 1,83 1,86 1,88 1,93	1,18 1,21 1,24 1,27 1,325 1,325 1,40 1,425 1,555 1,555 1,555 1,555 1,64 1,72 1,74 1,83 1,93 1,96 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98	1,281 1,34 1,37 1,443 1,46 1,45 1,55 1,55 1,63 1,65 1,72 1,77 1,82 1,88 1,90 2,00 2,10 2,11 2,11 2,11 1,11 1,11 1,1	1,46 1,452 1,555 1,559 1,65 1,773 1,76 1,84 1,89 1,95 2,002 2,005 2,113 2,180 2,22 2,23 2,23 2,23	1,64 1,67 1,71 1,77 1,80 1,84 1,90 1,92 1,92 2,03 2,05 2,07 2,07 2,12 2,13 2,15 2,17 2,20 2,22 2,23 2,25 2,27 2,28 2,28 2,28 2,28 2,27	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,01 0,01 0,01 0,02 0,02 0,02 0,02 0,02	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,03 0,04 0,05	0,02 0,03 0,03 0,03 0,03 0,03 0,03 0,03
10	8200 8400 8600 8800 9000 9200 9400 9700 9700 10100 10500	0,23 0,24 0,24 0,25 0,25 0,26 0,26 0,26 0,27 0,27	0,37 0,38 0,39 0,39 0,40 0,41 0,42 0,43 0,44 0,45	0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,63 0,64 0,64	0,66 0,67 0,68 0,69 0,71 0,72 0,73 0,75 0,76 0,77	0,77 0,79 0,80 0,82 0,83 0,84 0,86 0,88 0,90 0,90	0,90 0,91 0,93 0,95 0,96 0,98 0,99 1,02 1,03 1,05 1,07	1,02 1,04 1,06 1,07 1,09 1,11 1,13 1,15 1,17 1,18 1,21	1,31 1,33 1,36 1,38 1,40 1,42 1,44 1,46 1,48 1,50 1,53	1,48 1,50 1,52 1,54 1,56 1,59 1,60 1,63 1,65 1,67 1,70	1,65 1,67 1,69 1,71 1,73 1,75 1,77 1,80 1,81 1,83 1,85	1,81 1,83 1,85 1,87 1,89 1,91 1,92 1,94 1,95 1,96 1,98	1,95 1,97 1,99 2,00 2,01 2,03 2,04 2,05 2,05 2,06 2,05	2,08 2,09 2,10 2,11 2,12 2,12 2,12 2,12 2,11 2,10 2,07	2,14	2,22 2,21 2,20 v > 60 Wende sich an Beratun	n Sie unsere gs-	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	0,03 0,03 0,04 0,04 0,04 0,04 0,04 0,04	0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06	0,06 0,06 0,06 0,06 0,07 0,07 0,07 0,07

PROFIL PK

NENNLEISTUNG P_N [kW] PRO RIPPE FÜR β = 180° UND $L_b = 1600 \text{ mm}$

1450 0.29 0.27 0.88 0.79 0.84 0.99 1.41 1.32 1.51 1.73 2.01 2.88 2.42 2.86 3.19 2.56 3.97 0.01 0.01 0.01 0.02 0.03 0.04 0.03 0.04 0.05	IUL	elle 7																					
950 021 027 041 045 057 049 077 042 105 129 139 158 168 200 223 250 281 001 002 033 040 1435 078 048 033 106 072 148 175 211 232 251 310 324 314 314 315 15 535 31 05 20 28 10 010 002 037 040 010 101 010 010 010 010 010 010 010	[s/m] ^		45	50	63	<i>7</i> 1										224	250	280	315	pro Ri 1,01 bis	ppe für 1,06 bis	Ubers 1,27 bis	etzung i
1700	2	950 1450 2850 200 400 600 800 1000 1100 1200 1300 1400 1500	0,21 (0,29 (0,48 (0,06 (0,11 (0,05 (0,12 (0,05 (0,12 (0,27 0,37 0,63 0,08 0,13 0,19 0,23 0,28 0,30 0,32 0,34 0,36 0,38	0,41 0,58 1,00 0,11 0,20 0,28 0,35 0,43 0,46 0,50 0,53 0,56 0,60	0,49 0,70 1,23 0,13 0,24 0,33 0,43 0,52 0,56 0,60 0,64 0,68 0,72	0,59 0,84 1,48 0,15 0,28 0,40 0,51 0,61 0,67 0,72 0,77 0,82 0,87	0,69 0,99 1,75 0,18 0,33 0,46 0,60 0,72 0,78 0,85 0,91 0,96 1,02	0,79 1,14 2,01 0,20 0,37 0,53 0,68 0,83 0,90 0,97 1,04 1,11 1,18	0,92 1,32 2,32 0,23 0,43 0,61 0,79 0,96 1,04 1,12 1,20 1,28 1,36	1,05 1,51 2,65 0,27 0,49 0,70 0,90 1,09 1,19 1,28 1,37 1,47 1,56	1,20 1,73 3,01 0,30 0,56 0,80 1,03 1,25 1,36 1,47 1,57 1,67 1,78	1,39 2,01 3,47 0,35 0,65 0,93 1,20 1,45 1,58 1,70 1,83 1,95 2,07	1,58 2,28 3,90 0,40 0,74 1,06 1,36 1,66 1,80 1,94 2,08 2,21 2,35	1,68 2,42 4,11 0,42 0,78 1,12 1,44 1,76 1,91 2,06 2,20 2,35 2,49	2,00 2,86 4,75 0,50 0,93 1,33 1,72 2,09 2,27 2,44 2,61 2,78 2,95	2,23 3,19 5,16 0,56 1,04 1,49 1,92 2,34 2,53 2,73 2,73 2,92 3,10 3,28	2,50 3,56 5,56 0,63 1,17 1,68 2,16 2,62 2,84 3,05 3,26 3,46 3,66	2,81 3,97 5,91 0,71 1,32 1,89 2,42 2,93 3,18 3,41 3,64 3,86 4,07	0,01 0,02 0,01 0,01 0,01 0,01 0,01 0,01	0,02 0,04 0,07 0,01 0,01 0,02 0,02 0,03 0,03 0,03 0,03	0,03 0,05 0,10 0,01 0,01 0,02 0,03 0,03 0,04 0,04 0,04 0,05 0,05	0,04 0,06 0,12 0,01 0,02 0,03 0,03 0,04 0,05 0,05 0,06 0,06
3400 0,54 0,71 1,15 1,41 1,70 2,01 2,31 2,67 3,03 3,43 3,93 4,49 4,60 5,21 5,57 5,85 0,02 0,09 0,12 0,15 3600 0,55 0,74 1,20 1,48 1,78 2,10 2,42 2,78 3,16 3,58 4,08 4,54 4,75 5,34 5,65 5,87 0,02 0,09 0,12 0,15 3600 0,55 0,76 1,23 1,51 1,82 2,15 2,47 2,84 3,23 3,64 4,15 4,61 4,52 5,34 5,65 5,86 0,02 0,09 0,12 0,15 3900 0,59 0,79 1,28 1,57 1,89 2,24 2,57 2,95 3,35 3,77 4,29 4,74 4,84 5,43 5,70 0,02 0,10 0,13 0,17 4,000 0,60 0,80 1,30 1,60 1,93 2,28 2,66 3,06 3,46 3,89 4,41 4,85 5,45 5,51 4,59 5,50 5,72 0,02 0,10 0,13 0,17 4,100 0,61 0,82 1,33 1,63 1,96 2,32 2,66 3,06 3,46 3,89 4,41 4,85 6,44 5,47 5,71 0,02 0,10 0,14 0,17 4,200 0,62 0,83 1,35 1,66 2,00 2,36 2,71 3,11 3,52 3,95 4,47 4,91 5,09 5,54 5,69 0,02 0,10 0,14 0,18 4,400 0,64 0,86 1,40 1,72 2,07 2,44 2,80 3,21 3,63 4,06 4,57 5,00 5,17 5,56 0,03 0,11 0,15 0,19 4,400 0,66 0,88 1,44 1,78 1,78 2,10 2,28 3,31 3,73 4,17 4,67 5,00 5,17 5,56 0,03 0,11 0,15 0,19 4,400 0,66 0,88 1,44 1,78 2,14 2,52 2,89 3,31 3,73 4,17 4,67 5,00 5,17 5,56 0,03 0,11 0,15 0,19 4,400 0,66 0,88 1,44 1,78 2,14 2,52 2,89 3,31 3,73 4,17 4,67 5,00 5,13 5,55 0,03 0,11 0,15 0,19 4,400 0,66 0,88 1,44 1,78 2,14 2,52 2,89 3,31 3,73 4,17 4,67 5,00 5,13 5,55 0,03 0,11 0,15 0,19 4,400 0,69 0,92 1,51 1,86 2,23 2,63 3,01 3,44 3,87 4,30 4,49 5,50 5,52 5,51 0,03 0,11 0,15 0,19 4,400 0,69 0,97 1,59 1,96 2,29 3,35 3,77 4,21 4,71 5,10 5,28 5,51 0,03 0,11 0,15 0,19 4,400 0,69 0,97 1,47 1,80 2,17 2,56 2,93 3,35 3,77 4,21 4,71 5,10 5,55 5,4 0,03 0,11 0,15 0,19 4,400 0,69 0,97 1,47 1,80 2,17 2,56 2,93 3,35 3,77 4,21 4,71 5,10 5,55 5,4 0,03 0,11 0,15 0,19 4,400 0,69 0,97 1,57 1,94 2,33 2,74 3,13 3,57 3,97 4,42 4,48 5,18 5,28 0,03 0,13 0,10 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,	(3)	1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000	0,33 (0,34 (0,36 (0,37 (0,37 (0,41 (0,42 (0,44 (0,45 (0,45 (0,47 (0,49 (0,50 (0,45 (0,42 0,44 0,46 0,48 0,50 0,52 0,53 0,55 0,57 0,59 0,60 0,62 0,64	0,66 0,69 0,72 0,75 0,79 0,82 0,84 0,87 0,90 0,93 0,96 0,99 1,02 1,04	0,80 0,84 0,88 0,92 0,96 1,00 1,03 1,07 1,10 1,14 1,18 1,21 1,25 1,28	0,96 1,01 1,06 1,10 1,15 1,20 1,24 1,28 1,33 1,37 1,41 1,46 1,50 1,54	1,14 1,19 1,25 1,31 1,36 1,41 1,47 1,52 1,57 1,62 1,67 1,72 1,77 1,82	1,31 1,38 1,44 1,50 1,57 1,63 1,69 1,75 1,81 1,87 1,93 1,98 2,04 2,10	1,51 1,59 1,66 1,74 1,81 1,88 1,95 2,02 2,09 2,16 2,22 2,29 2,36 2,42	1,73 1,82 1,90 1,98 2,07 2,15 2,23 2,31 2,39 2,46 2,54 2,61 2,69 2,76	1,98 2,07 2,17 2,27 2,36 2,45 2,54 2,63 2,72 2,80 2,89 2,97 3,05 3,13	2,30 2,41 2,52 2,63 2,74 2,84 2,94 3,04 3,14 3,24 3,33 3,43 3,52 3,61	2,61 2,73 2,86 2,98 3,10 3,21 3,33 3,44 3,55 3,65 3,76 3,86 3,95 4,05	2,76 2,89 3,02 3,15 3,27 3,40 3,51 3,63 3,74 3,85 4,06 4,16 4,25	3,26 3,41 3,56 3,71 3,85 3,98 4,11 4,24 4,36 4,48 4,59 4,69 4,79 4,89	3,63 3,79 3,95 4,11 4,25 4,40 4,53 4,66 4,79 4,90 5,01 5,21 5,21 5,30	4,03 4,21 4,37 4,54 4,69 4,83 4,97 5,10 5,22 5,33 5,52 5,60 5,67	4,47 4,65 4,83 4,99 5,15 5,29 5,54 5,54 5,74 5,82 5,94 5,97	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,02	0,04 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,07 0,07 0,07	0,06 0,06 0,06 0,07 0,07 0,07 0,08 0,08 0,09 0,09 0,09 0,10 0,10	0,07 0,08 0,08 0,09 0,09 0,10 0,11 0,11 0,11 0,12 0,12 0,13
6600 0,81 1,10 1,84 2,26 2,70 3,15 3,56 3,98 4,36 4,66 4,85	10	3400 3500 3700 3800 4000 4100 4200 4300 4500 4500 4800 4900 5000 5100 5200 5300 5400	0,52 (0,53 (0,55 (0,68 0,71 0,71 0,73 0,74 0,77 0,77 0,78 0,83 0,88 0,88 0,99 0,99 0,99 0,99 0,99 0,99	1,10 1,15 1,15 1,18 1,20 1,25 1,25 1,28 1,30 1,33 1,37 1,40 1,42 1,47 1,49 1,51 1,55 1,57 1,59 1,59	1,38 1,41 1,44 1,51 1,57 1,60 1,63 1,66 1,72 1,75 1,78 1,86 1,88 1,86 1,89 1,94 1,96 1,90	1,62 1,60 1,74 1,78 1,82 1,85 1,96 2,03 2,07 2,10 2,14 2,20 2,23 2,23 2,36 2,36 2,42	1,92 1,97 2,06 2,10 2,15 2,24 2,28 2,32 2,40 2,44 2,48 2,56 2,60 2,63 2,71 2,74 2,78 2,78 2,78	2,21 2,231 2,37 2,42 2,52 2,57 2,66 2,71 2,780 2,85 2,97 3,05 3,13 3,17 3,24	2,61 2,67 2,78 2,84 2,90 2,95 3,11 3,16 3,35 3,35 3,40 4,48 3,57 3,60 4,53 3,60 4,53 3,60 4,60 3,60 4,60 4,60 4,60 4,60 4,60 4,60 4,60 4	2,90 2,97 3,10 3,16 3,23 3,35 3,41 3,57 3,63 3,77 3,82 3,87 3,95 4,03 4,03	3,43 3,51 3,58 3,71 3,87 3,87 4,01 4,06 4,17 4,26 4,30 4,34 4,42 4,45 4,45 4,45	3,86 3,931 4,08 4,15 4,29 4,35 4,41 4,457 4,67 4,75 4,85 4,87 4,92 4,93 4,93 4,95	4,22 4,31 4,47 4,54 4,61 4,74 4,80 4,85 4,91 5,00 5,03 5,10 5,13 5,15 5,18 5,18 5,18 5,18	4,43 4,50 4,67 4,75 4,82 4,88 4,99 5,04 5,09 5,13 5,23 5,27 5,28 5,28 5,28 5,27	5,06 5,14 5,21 5,28 5,34 5,39 5,43 5,55 5,55 5,55 5,55 5,55 5,55 5,55	5,45 5,51 5,57 5,62 5,65 5,68 5,70 5,71 5,72 5,71	5,82 5,85 5,86 5,87	6,00	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	0,08 0,08 0,09 0,09 0,09 0,10 0,10 0,11 0,11 0,11	0,11 0,11 0,11 0,12 0,12 0,13 0,13 0,13 0,14 0,14 0,15 0,15 0,15 0,16 0,17 0,17 0,17 0,18 0,18 0,18	0,14 0,14 0,15 0,15 0,16 0,17 0,17 0,18 0,19 0,19 0,20 0,21 0,22 0,22 0,23 0,23 0,25
30 40 50 v [m/s]	20	6200 6400 6600 6800 7200 7400 7600 8000 8200 8400 8600 8600 9200 9400 9600 9800	0,78 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,88 0,89 0,90 0,90 0,91 0,91 0,91	1,07 1,09 1,10 1,12 1,14 1,16 1,17 1,20 1,21 1,23 1,24 1,25 1,26 1,27 1,28 1,28 1,29 1,30 1,30 1,31	1,77 1,80 1,84 1,87 1,90 1,93 1,96 2,03 2,05 2,05 2,10 2,11 2,13 2,14 2,16 2,17 2,18 2,19 2,20	2,17 2,26 2,29 2,33 2,37 2,40 2,43 2,46 2,51 2,56 2,58 2,58 2,56 2,63 2,64 2,64 2,65 2,65	2,60 2,65 2,74 2,78 2,82 2,82 2,92 2,95 2,90 3,03 3,03 3,06 3,07 3,07 3,07 3,05	3,05 3,10 3,24 3,28 3,31 3,37 3,40 3,43 3,45 3,45 3,45 3,44 3,45 3,45 3,41 3,39 3,36	3,46 3,56 3,60 3,64 3,61 3,73 3,75 3,78 3,78 3,78 3,78 3,74 3,74 3,74 3,65 3,65 3,61	3,89 3,94 3,98 4,02 4,05 4,07 4,10 4,10 4,10 4,07 4,07 4,07 4,01 3,97 3,92	4,36 4,38 4,39 4,39 4,39 4,37 4,35 4,31 4,27	4,65 4,66 4,66 4,64 4,60	4,95 4,93 4,90	3,12		W aı	/enden n unser	Sie sie		0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05	0,15 0,16 0,17 0,17 0,18 0,19 0,20 0,21 0,21 0,22 0,23 0,23 0,23 0,23 0,24 0,25 0,25	0,20 0,21 0,22 0,23 0,25 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,31 0,32 0,33 0,33	0.25 0.25 0.27 0.28 0.29 0.30 0.31 0.33 0.34 0.35 0.36 0.37 0.36 0.37 0.39 0.40

PROFIL PL NENNLEISTUNG P_N [kW] PRO RIPPE FÜR β = 180° UND $L_b = 2096 \text{ mm}$

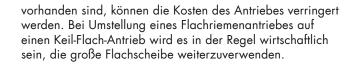
Tab	elle 8																				
[w/s] ^	n _k					Bez	ugsdur	chmess	er der l	kleinen	Scheibe							Überse pro Rip 1,01	tzungsz ope für 1,06	Übers	ag [kW] etzung i >1 ,57
<u>-</u>	[min ⁻¹]	76	80	90	100	112	125	140	160	180	200	224	250	280	315	355	400	bis 1,05	bis 1,26	bis 1,57	<i>></i> 1 ,5/
(3)	700 950 1450 2850 100 200 300 400 500 600 700 1000 1100 1200 1300 1400 1500 1600 1700 2000 2100 2200 2300 2400 2500	0,49 0,63 0,89 1,50 0,10 0,24 0,31 0,43 0,43 0,61 0,66 0,71 0,82 0,87 1,06 1,10 1,15 1,28 1,28 1,36	0,53 0,697 1,65 0,10 0,26 0,34 0,47 0,53 0,66 0,72 0,89 0,94 1,05 1,10 1,21 1,21 1,25 1,35 1,40 1,49	0,64 0,83 1,17 2,00 0,12 0,31 0,40 0,56 0,64 0,71 0,79 0,86 0,93 1,07 1,120 1,27 1,33 1,46 1,58 1,58 1,76 1,76 1,81	0,74 0,76 1,37 2,35 0,14 0,36 0,46 0,65 0,74 0,92 1,00 1,17 1,25 1,33 1,41 1,49 1,56 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,7	0,87 1,12 1,60 2,76 0,16 0,16 0,65 0,76 0,87 1,07 1,17 1,37 1,46 1,565 1,74 1,83 2,00 2,09 2,17 2,26 2,34 2,50	1,00 1,30 1,85 3,19 0,18 0,34 0,48 0,61 0,75 0,87 1,00 1,24 1,35 1,47 1,69 1,69 1,91 2,12 2,12 2,22 2,42 2,70 2,70 2,89	1,15 1,49 2,14 3,67 0,38 0,55 0,76 1,00 1,15 1,42 1,56 1,82 2,20 2,32 2,44 2,79 2,32 2,46 2,79 3,12 3,33	1,34 1,75 4,28 0,245 0,64 0,80 1,18 1,51 1,67 1,83 1,94 2,29 2,48 2,73 2,80 3,14 3,27 3,53 3,65 3,65 3,89	1,54 2,818 4,85 0,251 0,73 0,745 1,54 1,54 1,72 2,10 2,45 2,62 2,79 3,28 3,59 3,73 3,73 4,16 4,12 4,42	1,73 2,23 5,38 0,31 0,82 1,09 1,51 1,73 2,16 2,76 2,76 2,75 3,132 3,50 3,85 4,02 4,18 4,50 4,65 4,79 4,93	1,96 23,56 5,96 0,35 5,96 0,93 1,26 1,71 1,96 2,44 2,67 2,91 23,33 3,75 3,95 4,13 4,52 4,70 4,70 4,70 4,70 4,70 4,70 5,20 5,50	2,20 2,87 6,51 0,39 6,51 0,39 1,04 1,364 1,93 2,20 2,74 3,25 3,25 3,74 4,42 4,63 4,50 4,50 5,59 5,75 5,75 6,06	2,48 3,23 4,58 7,04 0,44 1,17 1,55 2,17 2,48 2,08 3,37 3,65 3,65 3,65 4,45 4,45 4,45 4,45 5,17 6,580 5,80 5,80 6,17 6,34 6,64	2,80 3,612 7,51 0,502 1,32 1,71 2,45 2,80 4,11 4,70 4,78 4,78 5,51 5,759 6,21 6,60 6,78 6,94 7,21	3,16 4,09 5,71 7,82 0,564 1,50 1,935 2,76 3,164 3,91 4,27 4,94 5,26 5,85 6,12 6,37 6,82 7,02 7,36 7,49 7,70	3,55 4,58 4,32 7,84 0,63 1,17 1,69 2,18 3,55 3,11 3,55 4,78 5,51 5,85 6,16 6,74 6,79 7,59 7,74 7,78 7,95 8,03	0,01 0,01 0,02 0,03 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,02	0,03 0,04 0,07 0,13 0,01 0,01 0,02 0,03 0,04 0,04 0,05 0,06 0,07 0,07 0,08 0,09 0,09 0,10 0,11 0,11	0,04 0,06 0,07 0,01 0,01 0,02 0,03 0,04 0,05 0,06 0,06 0,08 0,09 0,10 0,12 0,12 0,13 0,14 0,15 0,16	0,06 0,08 0,12 0,23 0,01 0,02 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,15 0,15 0,15 0,15 0,15 0,15 0,17
(1)	2600 2700 2800 2900 3000 3100 3200 3500 3500 3600 3700 4000 4100 4200 4300 4400 4500 4700 4800 5000 5100 5200 5300 5500 5500	1,40 1,44 1,52 1,56 1,63 1,67 1,74 1,78 1,81 1,91 1,94 2,00 2,05 2,01 2,16 2,13 2,25 2,25 2,23 2,23 2,23	1,54 1,58 1,63 1,71 1,75 1,83 1,87 1,99 2,02 2,09 2,13 2,19 2,23 2,23 2,24 2,35 2,45 2,55 2,55 2,55	1,87 1,928 2,03 2,13 2,233 2,233 2,247 2,55 2,604 2,725 2,869 2,893 2,902 2,902 2,903 2,90	2,19 2,262 2,388 2,451 2,562 2,674 2,79 2,840 2,95 3,00 3,09 3,14 3,33 3,39 3,42 3,45 3,55 3,55 3,55 3,55 3,55 3,55 3,55	2,57 2,652 2,80 2,91 3,08 3,121 3,33 3,45 1 3,561 3,76 3,86 3,94 4,09 4,12 4,18	2,98 3,15 3,15 3,23 3,347 3,55 3,69 3,77 3,83 4,03 4,03 4,05 4,20 4,25 4,20 4,25 4,45 4,45 4,45 4,63 4,63 4,66 4,71	3,43 3,52 3,72 3,81 3,98 4,07 4,123 4,31 4,38 4,52 4,59 4,57 4,82 4,97 5,00 5,12 5,17 5,20 5,23	4,00 4,112 4,33 4,43 4,53 4,72 4,89 4,97 5,130 5,26 5,38 5,44 5,5,58 5,58 5,58 5,57 5,77 5,77 5,77 5,	4,55 4,67 4,90 5,12 5,12 5,40 5,57 5,65 5,78 5,78 5,95 5,99 6,00 6,11 6,13 6,10 6,07 6,00 6,00 6,00	5,06 5,192 5,343 5,55 5,655 5,85 5,92 6,09 6,163 6,43 6,43 6,446 6,446 6,442 6,438 6,446 6,442 6,438 6,446 6,442 6,438 6,446 6,446 6,442 6,438 6,438 6,446 6,466 6,466 6,466 6,466 6,466 6,466 6,466 6	5,64 5,77 5,901 6,13 6,23 6,41 6,45 6,66 6,74 6,76 6,77 6,75 6,73 6,68 6,63 6,63 6,63 6,63 6,63 6,63 6,6	6,20 6,33 6,45 6,56 6,56 6,76 6,76 6,70 7,04 7,07 7,06 7,04 7,07 6,91 6,83 6,74	6,77 6,89 7,00 7,09 7,17 7,23 7,31 7,33 7,32 7,29 7,17 7,09	7,32 7,41 7,54 7,54 7,57 7,59 7,56 7,51 7,34 7,34	7,76 7,81 7,81 7,81 7,77 7,71	8,02 7,98 7,90	0,03 0,03 0,03 0,03 0,03 0,04 0,04 0,04	0,12 0,13 0,13 0,14 0,14 0,15 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,23 0,23 0,24 0,25 0,26 0,26	0,17 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,24 0,25 0,26 0,26 0,27 0,28 0,29 0,30 0,31 0,31 0,33 0,33 0,34 0,35 0,35	0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,40 0,40 0,41 0,42 0,43 0,44 0,45 0,45
	5700 5800 5900 6000	2,32 2,34 2,35 2,37 2,39	2,59 2,61 2,63	3,13 3,15 3,17 3,19	3,64 3,67 3,69 3,71	4,20 4,23 4,25 4,27	4,74 4,75 4,77 4,78	5,24 5,25 5,25 5,25 5,25	5,73 5,72 5,70 5,68	5,95				V	> 40 r Venden n unset eratunç	Sie sic e		0,06 0,07 0,07 0,07	0,27 0,28 0,28 0,28	0,36 0,37 0,38 0,38	0,46 0,47 0,48 0,49

PROFIL PM

NENNLEISTUNG P_N [kW] PRO RIPPE FÜR β = 180° UND $L_b = 4089 \text{ mm}$

Tabelle	9																				
[s/w] > [mir		180	190	200	224			chmess 315			Scheib 450			630	<i>7</i> 10	800	1000	pro Ri	ope für	Übers	ag [kW] etzung i > 1,57
(3) 144 288 299 330 314 256 229 320 310 314 256 229 320 310 314 256 229 320 310 310 310 310 310 310 310 310 310 31	700 950 950 100 200 100 200 400 500 700 800 700 800 700 800 700 800 700 800 700 800 8	3,51 4,46 6,06 8,24 0,70 1,25 1,76 3,10 3,90 4,27 4,98 5,31 5,92 6,47 6,95 7,36 7,54 7,78 7,78 8,06 8,12 8,23 8,23 8,23	3,83 4,88 6,65 8,77 1,36 1,243 2,92 3,393 4,27 4,68 5,45 6,16 6,80 7,7,62 7,85 8,43 8,58 8,43 8,58 8,88 8,96 8,93 8,88 8,98 8,98 8,88	4,16 5,30 7,22 0,64 0,81 1,46 2,06 3,16 4,63 3,67 4,463 5,508 5,593 6,32 6,705 7,39 7,71 8,52 8,75 8,75 8,75 9,51 9,64 9,63 9,64 9,63 9,64 9,63 9,64 9,63 9,64 9,64 9,64 9,64 9,64 9,64 9,64 9,64	4,93 6,29 8,57 11,01 0,95 1,72 2,43 3,10 3,73 4,35 5,49 6,03 6,03 6,03 6,75 10,96 9,17 10,85 11,09 111,05 110,97 111,05 110,97 111,05 110,95 1	5,75 7,34 9,96 1,09 1,99 2,82 3,60 4,35 5,07 5,75 7,04 7,04 7,64 8,75 9,26 9,26 9,18 10,58 10,58 10,58 11,29 11,58 11,29 11,58 11,29 11,29 11,29 11,21 12,33 12,40 12,32 12,12 12,13 12,40 12,12 12,13 12,13 12,13 12,13	280 6,68 8,52 11,47 1,76 2,30 3,18 5,05 5,88 6,44 8,17 8,86 10,12 10,72 11,71 12,58 13,16 13,39 11,71 12,58 13,67 13,71 13,71	7,74 9,85 13,11 12,69 1,45 2,66 3,78 4,84 4,84 6,82 7,74 8,62	8,93 11,31 14,80 11,34 1,66 3,06 4,36 4,36 7,87 8,93 9,92	10,22 12,86 16,43 8,03 1,90 3,51 5,00 6,42 7,75 9,02 10,22 11,34	11,60 14,48 17,90 1,86 2,17 4,00 5,71 7,32 8,83 10,26 11,60 12,83	500 12,92 15,97 18,97 2,43 4,49 6,40 8,20 9,89 11,46 12,92 14,25	560 14,43 17,58 19,66 2,74 5,07 7,22 9,24 11,12 12,85 14,43 15,83	16,07 19,20 19,57 3,10 5,73 8,16 12,50 14,39 16,07 17,51 18,70 19,62 20,42 20,42 19,95	17,78 20,65 18,16 3,50 6,48 9,22 11,73 14,01 16,04 17,78 19,20	19,47 21,74 14,71 3,95 7,31 10,37 13,15 15,62 17,74 19,47 20,75 21,55 21,59 21,79 21,44	22,23 21,79 4,93 9,10 12,82 16,08 18,79 20,87 22,23 22,76 22,37	0,06 0,08 0,12 0,02 0,02 0,02 0,03 0,04 0,05 0,06 0,07	1,06 bis 1,26 0,24 0,33 0,50 0,07 0,10 0,14 0,17 0,21 0,21 0,24 0,33 0,41 0,45 0,45 0,45 0,45 0,45 0,50 0,72 0,72 0,72 0,74 0,72 0,74 0,74 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	1,27 bis 1,57	efzung 1 > 1,57
															Wende an unse Beratur	ere	nieure!				
																			v [n	n/s]	

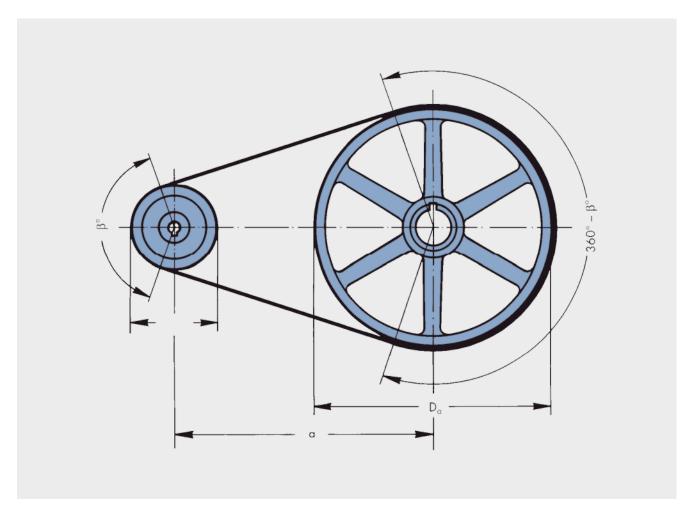
SONDERANTRIEBE


KEIL-FLACH-ANTRIEB

[mm]

[mm]

Der Keil-Flach-Antrieb besteht aus einer Keilrippenscheibe und einer Flachscheibe. Für Antriebe mit stoßweiser Belastung oder mit großem Schwungmoment kann diese Art der Leistungsübertragung unter gewissen Voraussetzungen vorteilhaft sein. Da häufig Schwung- oder Flachscheiben



= Achsabstand

b	= Kranzbreite der Flachscheibe	[mm]
b_2	= Kranzbreite der Keilrippenscheibe	[mm]
D_{α}	= Außendurchmesser der Flachscheibe	[mm]
D_{Z}	 Zuschlag zur Ermittlung des theoretischen Berechnungsdurchmessers 	[mm]
d_b	= Bezugsdurchmesser der Keilrippenscheibe	[mm]
f	 Zuschlag zur Ermittlung der Kranzbreite der Flachscheibe 	[mm]
h	= Wölbhöhe pro 100 mm Scheibenkranzbreite	[mm]
i	= Übersetzung	

= errechnete Bezugslänge des Rippenbandes

SONDERANTRIEBE

KEIL-FLACH-ANTRIEB

Berechnung von Keil-Flach-Antrieben

Die leistungsmäßige Berechnung eines Keil-Flach-Antriebes wird nach der gleichen Methode durchgeführt, wie sie auf den Seiten 22 bis 24 aufgezeigt ist. Um einen funktionssicheren und wirtschaftlichen Keil-Flach-Antrieb zu gestalten, müssen folgende wichtige Voraussetzungen überprüft

- Die kleine Scheibe muss immer als Keilrippenscheibe ausgebildet sein.
- Besonders wirtschaftlich wird ein Keil-Flach-Antrieb, wenn

$$K = \frac{D_a - d_b}{a}$$
 zwischen 0,5 und 1,15 liegt.

Die günstigste Antriebsdimensionierung wird bei K = 0,85 erreicht. Liegt der K-Faktor außerhalb des empfohlenen Bereiches, so ist es wirtschaftlicher, einen Rippenbandantrieb mit Keilrippenscheiben vorzusehen.

 Aus diesen Voraussetzungen ergeben sich folgende Empfehlungen:

Übersetzung	$i = \frac{D_a + D_Z}{d_b + 2 h_b} \ge 3$
A shoot stood	$\alpha_{zul} \ge D_{\alpha}$
Achsabstand	$\alpha = \frac{D_a - d_b}{0.85}$
V.F. L.	$K = \frac{D_a - d_b}{a}$
K-Faktor	K _{zul} 0,5 bis 1,15

• Bei der Berechnung der Anzahl der Rippen und der Vorspannung ist zu beachten, dass ein besonderer Winkelfaktor c₁ nach Tabelle 10 eingesetzt werden muss.

Als Ergänzung zur Berechnungsmethode der Seiten 22 bis 24 muss die Trumkraft im statischen Zustand für Keil-Flach-Antriebe laut nebenstehender Formel berechnet werden.

Tabelle 10: Winkelfaktor c₁ (nur für Keil-Flach-Antriebe)

$K = \frac{D_a - d_b}{a}$	β ≈	c ₁
0 0,07 0,15 0,22 0,29 0,35 0,40 0,45 0,50 0,57 0,64 0,70 0,75 0,80 0,85 0,92 1,00 1,07 1,15 1,21 1,30 1,36 1,45	180° 176° 170° 167° 163° 160° 156° 153° 150° 146° 143° 140° 137° 134° 130° 125° 120° 115° 110° 106° 100° 96° 90°	0,75 0,76 0,77 0,79 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,86 0,86 0,86 0,80 0,78 0,77 0,73 0,72 0,70

Die Längenberechnung wird nach der Bezugslänge Lb durchgeführt. Deshalb muss zum Außendurchmesser der Flachscheibe der Zuschlag D₇ addiert werden, um den theoretischen Berechnungsdurchmesser zu erhalten.

Tabelle 11: Bezugs-Linien-Differenz h

Profil	РН	PJ	PK	PL	PM
h _b Nennmaß	0,80	1,25	1,60	3,50	5,00
D_{Z}	1,60	2,70	3,50	6,50	11,00

Berechnung der Bezugslänge

$$L_{bth} \approx 2 \ \alpha + 1,57 \ (d_b + D_\alpha + D_Z) + \frac{(D_\alpha + D_Z - d_b)^2}{4 \ \alpha}$$

Formel:

Berechnung der statischen Trumkraft für Keil-Flach-Antriebe

$$T = \frac{500 \cdot (2,25 - c_1) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2$$

SONDERANTRIEBE SPANN-/FÜHRUNGSROLLEN

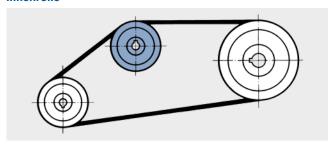
Rollen sind Keilrippen- oder Flachscheiben, die innerhalb eines Antriebssystems keine Leistung übertragen. Da sie zusätzliche Biegespannung im Riemen erzeugen, sollten sie nach Möglichkeit nur in den folgenden Fällen eingesetzt werden:

- bei festen Achsabständen, um die erforderliche Vorspannung aufzubringen sowie die maximal mögliche Riemendehnung aufzufangen
- als Beruhigungs- und Führungsrolle bei sehr langen, freien Riementrums
- als Führungs- und Umlenkrollen bei Antrieben, deren Scheiben nicht in einer Ebene liegen
- als beweglich angebrachte Spannrolle zur gleichmäßigen Spannung. Dies führt zu erhöhter Wartungsfreiheit und Lebensdauer. Die Spannrollenkraft wird meist durch Feder, Pneumatik oder Hydraulik erzeugt.

Müssen Rollen aus den vorgenannten Gründen unbedingt eingesetzt werden, sind folgende Kriterien bei der Antriebskonstruktion zu beachten:

- Lage der Rolle im Riementrum
- Rollendurchmesser
- Gestaltung der Rolle
- Verstellweg der Rolle zur Montage sowie zum Spannen und Nachspannen der Rippenbänder
- Korrektur des Leistungswertes P_N

Anordnung der Rolle


Rollen können grundsätzlich als Innen- oder Außenrolle angebracht werden. Bei der Endstellung der Rolle muss von der maximal anzunehmenden Riemendehnung ausgegangen werden. Flachscheiben, ob innen oder außen angebracht, sind möglichst weit von der Keilrippenscheibe, in der das Rippenband als Nächstes einläuft, zu platzieren. Etwaige Fluchtungsfehler zwischen Rolle und Scheibe, die durch seitliche Bewegungen auf der Flachscheibe entstehen, werden dadurch weitgehend vermieden.

Wenn nicht konstruktive Erfordernisse für eine Außenrolle sprechen, ist eine Innenrolle meist vorteilhafter. Ihr Durchmesser kann kleiner als der einer Außenrolle gewählt werden. Innenrollen können sowohl als Keilrippen- wie auch als Flachscheiben ausgeführt sein.

Innenrollen verringern den Umschlingungswinkel an den belasteten Scheiben und damit auch den Winkelfaktor c₁. Bei der Errechnung der Anzahl der Rippen ist daher der Winkelfaktor zu wählen, der sich bei maximaler Riemendehnung ergibt (siehe Tabelle 14, Seite 34).

Bei Antrieben mit langen Riementrums sind als Innenrolle Keilrippenscheiben vorzuziehen, da es bei Flachscheiben zu seitlichen Schwingungen kommen kann.

Innenrolle

Außenrollen müssen grundsätzlich als Flachscheiben ausgeführt sein, da sie auf dem Rücken des Rippenbandes laufen. Sie vergrößern den Umschlingungswinkel. Es muss jedoch darauf geachtet werden, dass die maximal mögliche Riemendehnung aufgefangen wird und dabei nicht das gegenüberliegende Trum berührt.

Wegen der entgegengesetzten Biegewechsel beim Einsatz von Außenrollen ist mit Verminderung der Riemenlebensdauer zu rechnen.

Rolle im Last-/Leertrum

Die theoretischen Leistungsformeln und die Praxis haben gezeigt, dass Rollen möglichst im Leertrum angebracht werden sollen. Die Spannrollenkraft kann dadurch bedeutend geringer gehalten werden. Eine beweglich angebrachte Rolle darf nicht in einem reversierenden Antrieb zum Einsatz kommen, da Last- und Leertrum zwangsläufig ständig wechseln. Lassen Sie sich bei der besonderen Problematik von beweglich angebrachten Rollen durch unsere Ingenieure der Anwendungstechnik beraten!

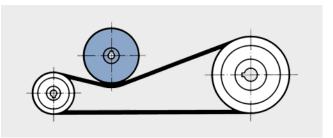
Mindestdurchmesser für Innenrollen

Innenrolle ≥ kleinste belastete Scheibe des Antriebssystems

Mindestdurchmesser für Außenrollen

Außenrolle ≥ 1.2-mal kleinste belastete Scheibe des **Antriebssystems**

Tabelle 12: Mindestrollendurchmesser


Profil	Mindestdurchmesser der Innenrolle [mm]	Mindestdurchmesser der Außenrolle [mm]
PH	20	40
PJ	25	50
PK	50	70
PL	100	150

Eine Unterschreitung der empfohlenen Mindestrollendurchmesser führt zu einer Einschränkung der üblichen Lebensdauer der Rippenbänder.

Gestaltung der Rolle

Keilrippenscheiben, die als Rollen verwendet werden, haben üblicherweise genormte Rillenabmessungen. Flachscheiben sollen nach Möglichkeit zylindrisch und nicht gewölbt sein.

Außenrolle

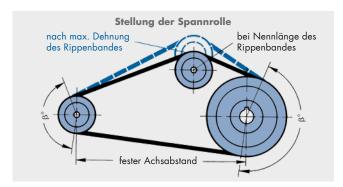
SONDERANTRIEBE SPANN-/FÜHRUNGSROLLEN

Antriebsberechnung

Die Längenberechnung und die Bestimmung der Anzahl der Rippen werden im Prinzip wie bei 2-Scheiben-Antrieben vorgenommen. Es sind jedoch einige Details zu beachten:

1. Berechnung der Rippenbandlänge über zwei Scheiben nach der Formel:

$$L_{bth} \approx 2 \ \alpha + 1,57 \ (d_{bg} + d_{bk}) + \frac{(d_{bg} - d_{bk})^2}{4 \ \alpha}$$


2. Muss das Rippenband bei festem Achsabstand montiert werden, ist der doppelte Verstellweg **y** zur errechneten Rippenbandlänge L_{bth} zu addieren (siehe Tabelle 3, Seite 19).

$$L_b = L_{bth} + 2 y$$

3. Danach ist die nächstgrößere Standardlänge L_{bSt} zu

Es ist zu prüfen, ob bei äußerster Rollenstellung das Rippenband noch ausreichend gespannt werden kann. In dieser Rollenstellung müssen also die Standardlänge L_{bSt} sowie der doppelte Verstellweg x aufgenommen werden (siehe Tabelle 3, Seite 19).

$$L_b$$
 bei Rollenendstellung = L_{bSt} + 2 x

Anzahl der Rollen

Die Verwendung von Rollen erhöht die Biegespannung im Rippenband. Um eine entsprechende Lebensdauerreduzierung zu vermeiden, muss der Korrekturfaktor c4 zusätzlich in die Berechnung eingesetzt werden. Dieser Korrekturfaktor berücksichtigt die Anzahl der Rollen bei eingehaltenem Mindestdurchmesser.

Tabelle 13

Anzahl der Rollen	c ₄
0 1 2	1,00 0,91 0,86 0,81
3	0,81

Die Nennleistung P_N je Rippe wird wie bisher für die kleinste belastete Scheibe berücksichtigt.

Für die Ermittlung des Winkelfaktors c1 muss von dem kleinsten Umschlingungswinkel der belasteten Scheiben ausgegangen werden, der sich bei maximal möglicher Rippenbanddehnung ergibt.

Tabelle 14: Winkelfaktor c1

β ≈	c ₁	β ≈	c ₁
75° 80° 85° 90° 95° 100° 105° 110° 115° 120° 125° 130° 145° 140° 145° 150° 155° 160° 165° 170°	0,78 0,82 0,84 0,85 0,87 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,97 0,98 0,98 0,99 0,99	175° 180° 185° 190° 195° 200° 205° 210° 215° 220° 225° 230° 240° 250°	1,00 1,00 1,00 1,01 1,01 1,01 1,01 1,02 1,02

Durch Berücksichtigung des Rollenfaktors c4 ergibt sich damit folgende Formel zur Bestimmung der Anzahl der Rippen:

$$z = \frac{P \cdot c_2}{P_N \cdot c_1 \cdot c_3 \cdot c_4}$$

KEILRIPPENSCHEIBEN

MESSSCHEIBEN - LÄNGEN-MESSBEDINGUNGEN **NACH DIN 7867 / ISO 9982**

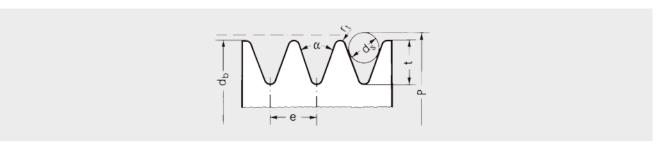


Tabelle 15

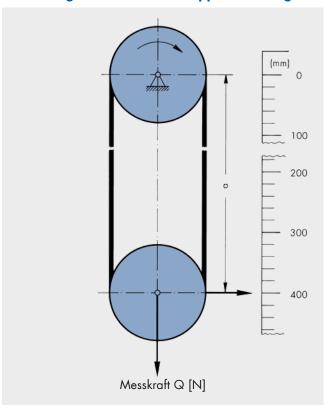
Profil	Bezugs- umfang U _b = d _b ·π [mm]	Bezugs- durch- messer d _b	Rillen- winkel a ± 0,5°	Prüfstift- Nenndurch- messer d _s ± 0,01 [mm]	Durchmeser über Prüfstift P ± 0,1 [mm]	Rillentiefe t _{min} [mm]	r _{t min} [mm]	Messkraft je Rippe Q [N]
PH*	100	31,8	40°	1,0	31,94	1,33	0,15	30
PH	300	95,5	40°	1,0	95,60	1,33	0,15	30
PJ*	100	31,8	40°	1,5	32,06	2,06	0,20	50
PJ	300	95,5	40°	1,5	95,72	2,06	0,20	50
PK	300	95,5	40°	2,5	96,48	3,45	0,25	100
PL	500	159,2	40°	3,5	161,51	4,92	0,40	200
PM	800	254,6	40°	7,0	259,17	10,03	0,75	450

^{*} Diese Werte gelten nur für Bezugslängen unter 457 mm.

Die Rillen und Maße der Messscheiben sollen nach den in den Tabellen 15 und 16 angegebenen Toleranzen gefertigt werden. Kontrollen auf Verschleiß und Beschädigungen müssen durchgeführt werden.

Andere Durchmesser können an Messscheiben verwendet werden, vorausgesetzt, die Rillenabmessungen entsprechen den Tabellen.

Messung der Rippenbandlänge


Das Rippenband wird über zwei gleich große Messscheiben gelegt, deren Rillenform der nebenstehenden Zeichnung zu entnehmen ist.

Die bewegliche Messscheibe wird so belastet, dass auf das Rippenband die Messkraft Q wirkt. Vor Messung des Achsabstandes a sollte das Rippenband mindestens drei Umläufe unter Belastung gemacht haben. Nur so ist ein guter Sitz in den Rillen und damit eine genaue Messung gewährleistet.

Die Bezugslänge ergibt sich aus dem doppelten Achsabstand a plus dem Bezugsumfang der Messscheibe.

$$L_b = 2 \alpha + U_b$$

Anordnung zum Messen der Rippenbandlänge

KEILRIPPENSCHEIBEN **MASE NACH DIN 7867 / ISO 9982**

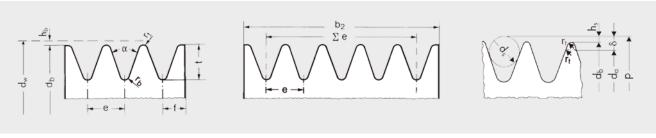


Tabelle 16

Profil	Bezugs- durchmesser d _{b min}	Rillen- winkel α	Rillen- abstand e	Σe ± 0,3	Rillentiefe _t _{min} _	f_{\min}	h_b	r _{t min}	r _{b max}	2 h _s	$2 \delta_{\text{max}}$
	[mm]	± 0,5°	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
PH	13	40°	1,60 (± 0,03)	(z – 1) 1,60	1,33	1,3	0,80	0,15	0,30	0,11	0,69
PJ	20	40°	2,34 (± 0,03)	(z – 1) 2,34	2,06	1,8	1,25	0,20	0,40	0,23	0,81
PK	45	40°	3,56 (± 0,05)	(z – 1) 3,56	3,45	2,5	1,60	0,25	0,50	0,99	1,68
PL	75	40°	4,70 (± 0,05)	(z - 1) 4,70	4,92	3,3	3,50	0,40	0,40	2,36	3,50
PM	180	40°	9,40 (± 0,08)	(z - 1) 9,40	10,03	6,4	5,00	0,75	0,75	4,53	5,92

Der Durchmesser d_{α} darf nach Wahl des Herstellers maximal um das Maß 2 δ – 2 h_s reduziert werden. Der Kreisbogen mit dem Radius rt muss mindestens einen Winkel von 30° besitzen und tangential in die Rillenflanke übergehen.

Kranzbreite b₂

$$b_2 = e(z - 1) + 2f$$

Der Unterschied zwischen den Durchmessern, gemessen als Abstand p, zwischen den äußeren Tangentialebenen der Prüfstifte in allen Rillen einer Scheibe darf den in Tabelle 17 angegebenen Wert nicht überschreiten.

Tabelle 17: Zulässiger Durchmesserunterschied

	•		
Bezugsdurch- messer der Scheibe [mm]	Tolera Anzahl der ≤ 6 Rillen	nz bei Rillen [mm] ≤ 10 Rillen	Zuschlag für jede weitere Rille [mm]
≤ 74	0,10	_	0,003
> 74 ≤ 500	_	0,15	0,005
> 500	_	0,25	0,010

Werkstoff

Alle herkömmlichen Werkstoffe, die im Maschinenbau verwendet werden, vorzugsweise Stahl, Grauguss, Alu-Legierungen, Messing sowie spannbare Kunststoffe.

Oberflächengüte

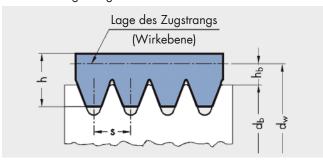
Keilrillen sollten eine maximale Rautiefe von $R_z \le 3.2 \ \mu m$ haben und müssen von Oberflächenfehlern frei sein.

Für die Geschwindigkeit < 30 m/s genügt statisches Auswuchten. Bei Geschwindigkeiten ≥ 30 m/s ist dynamisches Auswuchten erforderlich.

Herstellung

Scheiben für optibelt RB Rippenbänder fertigen wir nach Ihren Angaben. Bearbeitungskämme für Keilrippenscheiben bitte gesondert anfragen.

Tabelle 18: Rundlauftoleranz


Bezugsdurchmesser d _b [mm]	Rundlauftoleranz t _R
≤ 74	0,13
> 74 ≤ 250	0,25
> 250	0,25 + 0,0004 je mm Bezugsdurchmesser über 250

Planlauftoleranz

Die Planlauftoleranz t_p beträgt 0,002 mm je mm Bezugsdurchmesser.

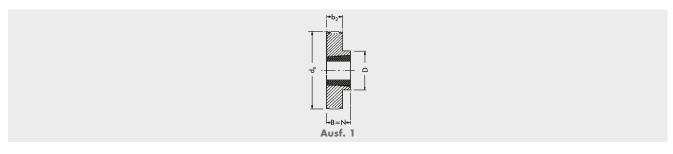
Wirkdurchmesser

Die Abbildung zeigt schematisch den Sitz eines Rippenbandes in der zugehörigen Scheibe.

KEILRIPPENSCHEIBEN

STANDARDSORTIMENT optibelt TB TAPER-BUCHSEN

	Taper-Buchsen mit metrischer Bohrung, Nut nach DIN 6885 Teil 1															
								Taper-l	Buchse		Materi	al: EN	-GJL-2()0 – DI	N EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bohrungs- durchmesser d ₂ [mm]	10 11 12 14 15 16 18 19 20 22 24 25	10 11 12 14 15 16 18 19 20 22 24 25 28	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50 55 60	25 28 30 32 35 38 40 42 45 48 50 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	40 42 45 48 50 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 95 100 105 110 115 120 125
Innensechskantschrauben [Zoll]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16}$ x $^{7}/_{8}$	$^{1}/_{2} \times 1$	$\frac{5}{8} \times 1^{1}/_{4}$	$\frac{5}{8} \times 1^{1}/_{4}$	$^{1}/_{2} \times 1^{1}/_{2}$	$1/_2 \times 1^1/_2$	$\frac{5}{8} \times \frac{13}{4}$	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$
Anzugsmoment [Nm]	5,7	5,7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Buchsenlänge [mm]	22,3	22,3	25,4	38,1	25,4	25,4	38,1	31,8	44,5	50,8	76,2	63,5	88,9	101,6	114,3	127,0
Gewicht bei d _{2 min} [≈ kg]	0,12	0,16	0,28	0,39	0,32	0,41	0,60	0,75	1,06	2,50	3,75	3,90	5,13	7,68	12,70	15,17


Ab 3525: Zylinderkopfschraube mit Innensechskant ▲ Diese Bohrung ist mit Flachnut ausgeführt.

Flachnute für Taper-Buchsen

Bohrungsdurchmesser d ₂ [mm]	Nutbreite b [mm]	Nuttiefe t ₂ [mm]	Bohrungsdurchmesser d ₂ [mm]	Nutbreite b [mm]	Nuttiefe t ₂ [mm]
24	8	2,0	28	8	2,0
25	Ω	1.2	12	12	2.2

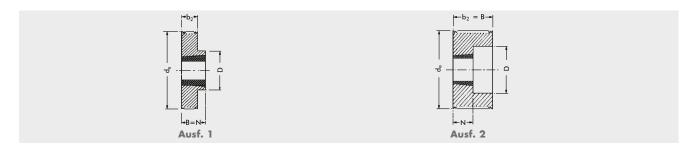
Т	aper-	Buchs	en mi	t Zoll	-Bohrı	ung, N	Nut no	ach Br	itisch	em St	andaı	d BS	46 Tei	l 1		
								Taper-l				al: EN			N EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bohrungs- durchmesser d ₂ [Zoll]	3/8* 1/2 5/8 3/4 7/8 1▲	3/8* 1/2 5/8 3/4 7/8 1 1 ¹ / ₈ **	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 11/8 11/8 11/4	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8	1/2 5/8 3/4 7/8* 1 1 ¹ /8 1 ³ /8 1 ¹ /2 1 ⁵ /8	5/8* 3/4 7/8 1 1 ¹ /8 1 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2	3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2 2 ¹ /8 2 ¹ /4 2 ³ /8 2 ¹ /2	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8 23/4 27/8 3	1 ⁷ / ₈	2 ¹ / ₈ 2 ¹ / ₄ 2 ³ / ₈ 2 ¹ / ₂ 2 ⁵ / ₈ 2 ³ / ₄ 2 ⁷ / ₈ 3 ¹ / ₈ 3 ¹ / ₄ 3 ³ / ₈	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	1 ⁷ / ₈ * 2* 2 ¹ / ₈ * 2 ¹ / ₄ * 2 ³ / ₈ * 2 ¹ / ₂ * 2 ⁵ / ₈ * 2 ³ / ₄ *	21/2* 23/4* 27/8* 3* 31/4* 33/8* 31/2* 33/4* 4* 4!/4**	
Innensechskantschrauben [Zoll]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16}$ x $^{7}/_{8}$	$^{1}/_{2} \times 1$	$\frac{5}{8} \times 1^{1}/_{4}$	$\frac{5}{8} \times 1^{1}/_{4}$	$^{1}/_{2} \times 1^{1}/_{2}$	$^{1}/_{2} \times 1^{1}/_{2}$	⁵ / ₈ x 1 ³ / ₄	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$
Anzugsmoment [Nm]	5,7	5,7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Buchsenlänge [mm]	22,3	22,3	25,4	38,1	25,4	25,4	38,1	31,8	44,5	50,8	76,2	63,5	88,9	101,6	114,3	127,0
Gewicht bei d _{2 min} [≈ kg]	0,12	0,16	0,28	0,39	0,32	0,41	0,60	0,75	1,06	2,50	3,75	3,90	5,13	7,68	12,70	15,17



Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _ь [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 4 PJ 47,5 TB 4 PJ 52,5 TB 4 PJ 57,5 TB 4 PJ 62,5 TB 4 PJ 67,5	4 4 4 4	1 1 1 1	GG GG GG GG	47,5 52,5 57,5 62,5 67,5	13 13 13 13 13	23 23 23 23 23	23 23 23 23 23	47,5 47,5 54,0 54,0 54,0	1008 1008 1108 1108 1108
TB 4 PJ 72,5 TB 4 PJ 77,5 TB 4 PJ 82,5 TB 4 PJ 87,5 TB 4 PJ 92,5	4 4 4 4	1 1 1 1	GG GG GG GG	72,5 77,5 82,5 87,5 92,5	13 13 13 13 13	23 26 26 26 26 26	23 26 26 26 26 26	54,0 70,0 78,0 78,0 78,0	1108 1210 1210 1210 1210
TB 4 PJ 97,5 TB 4 PJ 102,5 TB 4 PJ 107,5 TB 4 PJ 112,5 TB 4 PJ 117,5	4 4 4 4 4	1 1 1 1	GG GG GG GG	97,5 102,5 107,5 112,5 117,5	13 13 13 13 13	26 26 26 26 26	26 26 26 26 26	78,0 85,0 85,0 85,0 85,0	1210 1610 1610 1610 1610
TB 4 PJ 122,5 TB 4 PJ 127,5 TB 4 PJ 137,5 TB 4 PJ 152,5 TB 4 PJ 162,5	4 4 4 4	1 1 1 1	GG GG GG GG	122,5 127,5 137,5 152,5 162,5	13 13 13 13 13	26 26 26 26 26	26 26 26 26 26	85,0 85,0 85,0 85,0 85,0	1610 1610 1610 1610 1610
TB 4 PJ 172,5 TB 4 PJ 182,5 TB 4 PJ 192,5 TB 4 PJ 202,5 TB 4 PJ 222,5	4 4 4 4	1 1 1 1	GG GG GG GG	172,5 182,5 192,5 202,5 222,5	13 13 13 13 13	26 26 26 33 33	26 26 26 33 33	85,0 85,0 85,0 100,0 100,0	1610 1610 1610 2012 2012

Taper-Buchse	1008	1108	1210	1610	2012
Bohrung d ₂ [mm] von bis	10-25	10-28	11-32	14-42	14-50

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 8 PJ 47,5 TB 8 PJ 52,5 TB 8 PJ 57,5 TB 8 PJ 62,5 TB 8 PJ 67,5	8 8 8 8	4 4 4 4	GG GG GG GG	47,5 52,5 57,5 62,5 67,5	23 23 23 23 23	23 23 23 23 23	23 23 23 23 23	_ _ _ _	1008 1008 1108 1108 1108
TB 8 PJ 72,5 TB 8 PJ 77,5 TB 8 PJ 82,5 TB 8 PJ 87,5 TB 8 PJ 92,5	8 8 8 8	4 1 1 1	GG GG GG GG	72,5 77,5 82,5 87,5 92,5	23 23 23 23 23 23	23 26 26 26 26 26	23 26 26 26 26 26	70,0 78,0 78,0 78,0 78,0	1108 1210 1210 1210 1210
TB 8 PJ 97,5 TB 8 PJ 102,5 TB 8 PJ 107,5 TB 8 PJ 112,5 TB 8 PJ 117,5	8 8 8 8	1 1 1 1	GG GG GG GG	97,5 102,5 107,5 112,5 117,5	23 23 23 23 23 23	26 26 26 26 26 26	26 26 26 26 26 26	78,0 85,0 85,0 85,0 85,0	1210 1610 1610 1610 1610
TB 8 PJ 122,5 TB 8 PJ 127,5 TB 8 PJ 137,5 TB 8 PJ 152,5 TB 8 PJ 162,5	8 8 8 8	1 1 1 1	GG GG GG GG	122,5 127,5 137,5 152,5 162,5	23 23 23 23 23 23	26 26 26 26 26 26	26 26 26 26 26 26	85,0 85,0 85,0 85,0 85,0	1610 1610 1610 1610 1610
TB 8 PJ 172,5 TB 8 PJ 182,5 TB 8 PJ 192,5 TB 8 PJ 202,5 TB 8 PJ 222,5	8 8 8 8	1 1 1 1	GG GG GG GG	172,5 182,5 192,5 202,5 222,5	23 23 23 23 23	26 26 26 33 33	26 26 26 33 33	85,0 85,0 85,0 100,0 100,0	1610 1610 1610 2012 2012

Taper-Buchse	1008	1108	1210	1610	2012
Bohrung d ₂ [mm] von bis	10-25	10-28	11-32	14-42	14-50

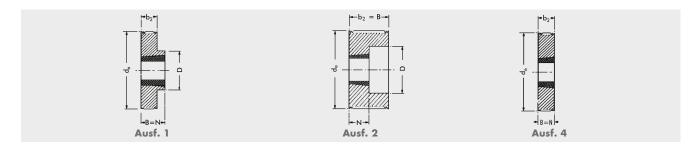
GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



TB 12 PJ 67,5 12 TB 12 PJ 72,5 12 TB 12 PJ 77,5 12 TB 12 PJ 82,5 12 TB 12 PJ 87,5 12	2 GG 2 GG 2 GG 2 GG 2 GG 2 GG 2 GG 2 GG	67,5 72,5 77,5 82,5	32 32 32 32 32 32 32 32 32 32	23 23 23 26 26	50,0 50,0 50,0 62,0 62,0	1108 1108 1108 1210
TB 12 PJ 107,5 12 TB 12 PJ 112,5 12 TB 12 PJ 117,5 12 TB 12 PJ 122,5 12 TB 12 PJ 127,5 12 TB 12 PJ 137,5 12 TB 12 PJ 152,5 12 TB 12 PJ 162,5 12 TB 12 PJ 172,5 12 TB 12 PJ 192,5 12 TB 12 PJ 192,5 12 TB 12 PJ 202,5 12	2 GG 2 GG 2 GG 2 GG 2 GG 1 GG 1 GG 1 GG	97,5 102,5 107,5 112,5 117,5 122,5 127,5 137,5 152,5 162,5 172,5 182,5 192,5	32 32 32 32 32 32 32 32 32 32 32 32 32 3	26 26 26 26 26 26 26 26 33 33 33 46 46 46	70,0 70,0 70,0 70,0 70,0 70,0 70,0 100,0 100,0 110,0 110,0 110,0	1210 1610 1610 1610 1610 1610 1610 2012 2012

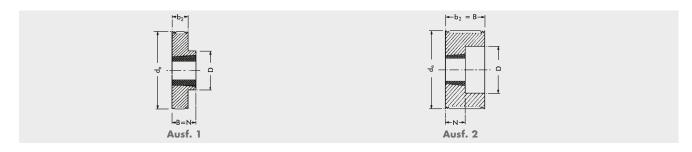
Taper-Buchse	1108	1210	1610	2012	2517
Bohrung d ₂ [mm] von bis	10-28	11-32	14-42	14-50	16-60

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



Taper-Buchse	1108	1210	1610	2012	2517
Bohrung d ₂ [mm] von bis	10-28	11-32	14-42	14-50	16-60

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 6 PL 78 TB 6 PL 83 TB 6 PL 88 TB 6 PL 93 TB 6 PL 98	6 6 6 6	2 2 2 2 2	GG GG GG GG	78 83 88 93 98	33 33 33 33 33	33 33 33 33 33	26 26 26 26 26	62,0 62,0 70,0 70,0 70,0	1210 1210 1610 1610 1610
TB 6 PL 103 TB 6 PL 108 TB 6 PL 113 TB 6 PL 118 TB 6 PL 123	6 6 6 6	2 2 2 2 2 4	GG GG GG GG	103 108 113 118 123	33 33 33 33 33	33 33 33 33 33	26 26 26 26 26 33	70,0 70,0 70,0 70,0 70,0	1610 1610 1610 1610 2012
TB 6 PL 133 TB 6 PL 148 TB 6 PL 158 TB 6 PL 168 TB 6 PL 178	6 6 6 6	4 4 4 4 1	GG GG GG GG	133 148 158 168 178	33 33 33 33 33	33 33 33 33 46	33 33 33 33 46	_ _ _ _ 110,0	2012 2012 2012 2012 2012 2517
TB 6 PL 188 TB 6 PL 198 TB 6 PL 218 TB 6 PL 238 TB 6 PL 258	6 6 6 6	1 1 1 1	GG GG GG GG	188 198 218 238 258	33 33 33 33 33	46 46 46 46 46	46 46 46 46 46	110,0 110,0 110,0 110,0 110,0	2517 2517 2517 2517 2517
TB 6 PL 278 TB 6 PL 298 TB 6 PL 318 TB 6 PL 348 TB 6 PL 388	6 6 6 6	1 1 1 1	GG GG GG GG	278 298 318 348 388	33 33 33 33 33	46 46 46 46 46	46 46 46 46 46	110,0 110,0 110,0 110,0 110,0	2517 2517 2517 2517 2517

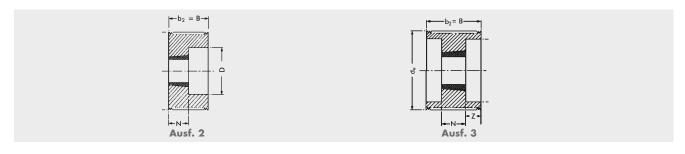
Taper-Buchse	1210	1610	2012	2517
Bohrung d ₂ [mm] von bis	11-32	14-42	14-50	16-60

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.

TB 8 PL 78
TB 8 PL 278 8 1 GG 278 42 46 46 110,0 2517 TB 8 PL 318 8 1 GG 318 42 46 46 110,0 2517 TB 8 PL 348 8 1 GG 348 42 46 46 110,0 2517 TB 8 PL 388 8 1 GG 348 42 46 46 110,0 2517 TB 8 PL 388 8 1 GG 388 42 46 46 110,0 2517 TB 8 PL 388 8 1 GG 388 42 46 46 110,0 2517

Taper-Buchse	1210	1610	2012	2517
Bohrung d ₂ [mm] von bis	11-32	14-42	14-50	16-60

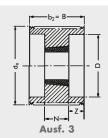
GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _ь [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 10 PL 88 TB 10 PL 93 TB 10 PL 98 TB 10 PL 103 TB 10 PL 108	10 10 10 10	3 3 2 2	GG GG GG GG	88 93 98 103 108	53 53 53 53 53	53 53 53 53 53	26 26 26 33 33	70,0 70,0 70,0 85,0 85,0	1610 1610 1610 2012 2012
TB 10 PL 113 TB 10 PL 118 TB 10 PL 123 TB 10 PL 133 TB 10 PL 148	10 10 10 10	2 2 2 2 2	GG GG GG GG	113 118 123 133 148	53 53 53 53 53	53 53 53 53 53	33 33 33 33 33	85,0 85,0 85,0 85,0 85,0	2012 2012 2012 2012 2012
TB 10 PL 158 TB 10 PL 168 TB 10 PL 178 TB 10 PL 188 TB 10 PL 198	10 10 10 10	2 2 2 2 2	GG GG GG GG	158 168 178 188 198	53 53 53 53 53	53 53 53 53 53	33 33 46 46 46	85,0 85,0 105,0 105,0 105,0	2012 2012 2517 2517 2517
TB 10 PL 218 TB 10 PL 238 TB 10 PL 258 TB 10 PL 278 TB 10 PL 298	10 10 10 10 10	2 2 2 2 2	GG GG GG GG	218 238 258 278 298	53 53 53 53 53	53 53 53 53 53	46 46 46 46 46	105,0 105,0 105,0 105,0 105,0	2517 2517 2517 2517 2517
TB 10 PL 318 TB 10 PL 348 TB 10 PL 388	10 10 10	2 2 2	GG GG GG	318 348 388	53 53 53	53 53 53	46 46 46	105,0 105,0 105,0	2517 2517 2517

Taper-Buchse	1610	2012	2517
Bohrung d ₂ [mm] von bis	14-42	14-50	16-60

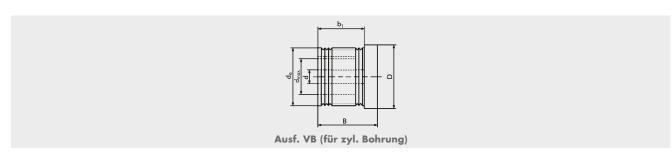
GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.



Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 12 PL 88 TB 12 PL 93 TB 12 PL 98 TB 12 PL 103 TB 12 PL 108	12 12 12 12 12	3 3 3 3 3	GG GG GG GG	88 93 98 103 108	62 62 62 62 62	62 62 62 62 62	26 26 26 33 33	70,0 70,0 70,0 85,0 85,0	1610 1610 1610 2012 2012
TB 12 PL 113 TB 12 PL 118 TB 12 PL 123 TB 12 PL 133 TB 12 PL 148	12 12 12 12 12	3 3 3 3 2	GG GG GG GG	113 118 123 133 148	62 62 62 62 62	62 62 62 62 62	33 33 33 33 46	85,0 85,0 85,0 85,0 105,0	2012 2012 2012 2012 2012 2517
TB 12 PL 158 TB 12 PL 168 TB 12 PL 178 TB 12 PL 188 TB 12 PL 198	12 12 12 12 12	2 2 2 2 2	GG GG GG GG	158 168 178 188 198	62 62 62 62 62	62 62 62 62 62	46 46 46 46 46	105,0 105,0 105,0 105,0 105,0	2517 2517 2517 2517 2517
TB 12 PL 218 TB 12 PL 238 TB 12 PL 258 TB 12 PL 278 TB 12 PL 298	12 12 12 12 12	2 2 2 2 2	GG GG GG GG	218 238 258 278 298	62 62 62 62 62	62 62 62 62 62	46 52 52 52 52	105,0 130,0 130,0 130,0 130,0	2517 3020 3020 3020 3020
TB 12 PL 318 TB 12 PL 348 TB 12 PL 388	12 12 12	2 2 2	GG GG GG	318 348 388	62 62 62	62 62 62	52 52 52	130,0 130,0 130,0	3020 3020 3020

Taper-Buchse	1610	2012	2557	3020
Bohrung d ₂ [mm] von bis	14-42	14-50	16-60	25-75

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.


Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper- Buchse
TB 16 PL 103 TB 16 PL 108 TB 16 PL 113 TB 16 PL 118 TB 16 PL 133 TB 16 PL 148 TB 16 PL 158 TB 16 PL 168 TB 16 PL 178 TB 16 PL 188 TB 16 PL 198 TB 16 PL 238 TB 16 PL 388 TB 16 PL 388		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	GG	103 108 113 118 123 133 148 158 168 178 188 198 218 238 258 278 298 318 348 388	80 80 80 80 80 80 80 80 80 80 80 80 80 8				

Taper-Buchse	2012	2557	3020
Bohrung d ₂ [mm] von bis	14-50	16-60	25-75

GG = Grauguss Weitere Abmessungen auf Anfrage. Fertigungstechnische Änderungen vorbehalten.

KEILRIPPENSCHEIBEN FÜR ZYLINDRISCHE BOHRUNG, PROFIL PJ

Bezeichnung	Anzahl der Rillen	Ausführung	Material	d _b [mm]	b ₁ [mm]	B [mm]	D [mm]	Vorbohrung d [mm]	Fertig- bohrung d _{max} [mm]	Gewicht [≈ kg]
## P.J. 22,5 ## P.J. 27,5 ## P.J. 37,5 ## P.J. 42,5 ## P.J. 22,5 ## P.J. 22,5 ## P.J. 27,5 ## P.J. 37,5 ## P.J. 37,5 ## P.J. 37,5 ## P.J. 22,5 ## P.J. 22,5 ## P.J. 22,5 ## P.J. 27,5 ## P.J. 27,5 ## P.J. 27,5 ## P.J. 32,5 ## P.J. 37,5 ## P.J. 42,5 ## P.	der	VB V	GG GG GG GG GG GG GG GG GG GG GG	22,5 27,5 32,5 37,5 42,5 22,5 27,5 32,5 37,5 42,5 22,5 27,5 32,5 37,5 42,5					bohrung d _{max}	

Für einwandfreie Leistungsübertragung und Erreichen der üblichen Riemenlebensdauer ist die korrekte Riemenvorspannung von Wichtigkeit. Häufig führt zu geringe oder zu hohe Vorspannung zum frühzeitigen Ausfall der Riemen. Ein Überspannen hat oft auch Lagerdefekte an der Antriebsoder Arbeitsmaschine zur Folge.

Es hat sich gezeigt, dass allgemeine Vorspannungsangaben, z. B. mit der "Daumendruckmethode", nicht geeignet sind, Antriebe optimal zu spannen, um sie wirtschaftlich voll ausnutzen zu können. Daher empfiehlt sich, mit den folgenden OPTIBELT-Methoden die erforderliche statische Trumkraft T individuell für jeden Antrieb zu berechnen. Sie ist die geringstmögliche für einen Antrieb, die es noch erlaubt, unter Berücksichtigung des normalen Schlupfes die höchste Leistung des Antriebes zu übertragen.

Nachdem die Riemen montiert sind und die ermittelte Achskraft aufgebracht wurde, ist die Vorspannung zu kontrollieren. Verwenden Sie hierzu unser OPTIBELT-Vorspannungsmessgerät.

Während der ersten Betriebsstunden ist der Antrieb zu beobachten und erfahrungsgemäß nach einer Laufzeit unter Volllast von 0,5 bis 4 Stunden nachzuspannen. Dadurch wird die Anfangsdehnung aufgenommen.

Nach ca. 24 Betriebsstunden ist es häufig angebracht, besonders dann, wenn nicht dauernd unter Volllast gefahren wird, den Antrieb zu kontrollieren und gegebenenfalls nachzuspannen. Danach können die Wartungsintervalle für den Antrieb erheblich vergrößert werden. Es sind unsere Montage- und Wartungshinweise zu beachten.

Ein Über- oder Unterspannen der Antriebe wird verhindert, wenn die Vorspannung nach einer der nachfolgend beschriebenen Methoden berechnet, aufgebracht und kontrolliert wird.

I. Kontrolle der Rippenbandvorspannung über die Eindrücktiefe des Trums

Diese Methode erlaubt die indirekte Messung der berechneten bzw. vorhandenen statischen Trumkraft. E = Eindrücktiefe je 100 mm Trumlänge

[mm] [mm]

E_a = Eindrücktiefe des Trums

[N]

f = Prüfkraft je Rippe

k = Konstante zur Berechnung der Zentrifugalkraft

[mm]

[N] [N]

S_a = Mindest-Achskraft im statischen Zustand

T = Mindest-Trumkraft im statischen Zustand je Rippe

1. Berechnung der statischen Trumkraft nach folgender Formel:

$$T \approx \frac{500 \cdot (2,03 - c_1) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2$$

Der Antrieb sollte maximal mit 1,3 T vorgespannt sein (bei Erstmontage).

- 2. Ermittlung der Eindrücktiefe je 100 mm Trumlänge E aus den Riemenvorspannungskennlinien des Diagramms 2 auf
- 3. Berechnung der Eindrücktiefe des Trums E_a für die vorhandene Trumlänge L:

$$E_{\alpha} \approx \frac{E \cdot L}{100}$$

$$L = a_{nom} \cdot \sin \frac{\beta}{2}$$

Prüfkraft f* aus Diagramm 2 entsprechend dem Profil in der Trummitte rechtwinklig zum Trum laut nachstehender Abbildung aufbringen, Eindrücktiefe messen und – wenn erforderlich – Vorspannung korrigieren.

* Bei Auswahl der Prüfkraft f die Anzahl der Rippen berücksichtigen.

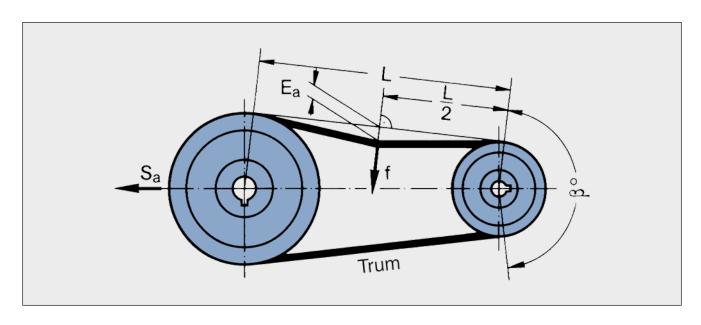
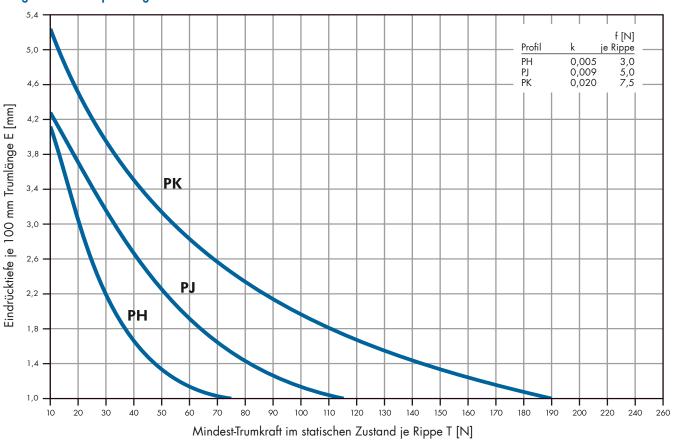
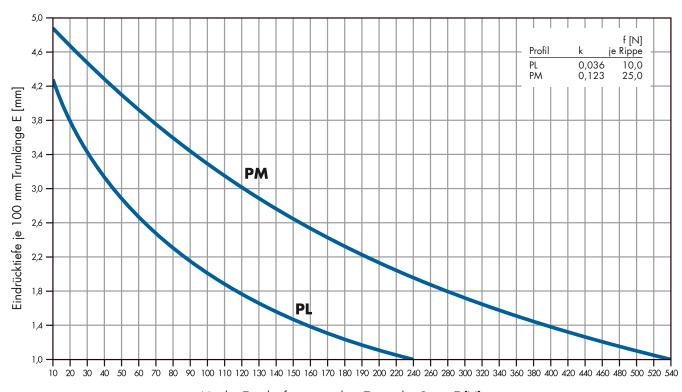




Diagramm 2: Vorspannungskennlinien

II. Kontrolle der Rippenbandvorspannung mit Längenadditionswert

Es hat sich bei der Vorspannungskontrolle für Rippenbänder aller Profile gezeigt, dass die Methode der Eindrücktiefe häufig nicht die ideale Kontrollmöglichkeit ist. Daher wird zur Vorspannungsermittlung dieses sehr einfache Verfahren von uns empfohlen:

1. Trumkraft T errechnen:

$$T \approx \frac{500 \cdot \left(2,03-c_1\right) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2$$

- 2. Die Außenlänge La des Rippenbandes wird im ungespannten Zustand auf dem Rippenbandrücken gemessen. Die Messung kann auch auf dem Antrieb ohne Spannung vorgenommen werden.
- 3. Errechnung des Längenadditionswertes A mit der Formel

$$A \approx L_{bSt} \cdot R$$

R = Dehnungsfaktor aus Tabelle 19, Seite 51

4. Dieser Längenadditionswert A wird zur gemessenen Außenlänge (nach 2.) addiert.

$$L_{\alpha}* \approx L_{\alpha} + A$$

- 5. Das Rippenband wird nun so lange gespannt, bis sich die unter 4. errechnete Außenlänge La* ergibt. Somit ist der Antrieb korrekt vorgespannt.
- 6. Wird der Antrieb nachgespannt, muss das Rippenband wieder entlastet werden, um es im spannungslosen Zustand erneut zu messen. Danach ist wieder, wie unter 4. und 5. beschrieben, vorzugehen.

Rippenband so lange spannen, bis 1103 mm, über Rippenbandrücken gemessen, erreicht sind. Damit ist die korrekte Vorspannung gegeben.

III. Kontrolle der Rippenbandvorspannung durch Messung der statischen Achskraft

Eine sehr genaue Methode zum Aufbringen der richtigen Vorspannung ist das direkte Messen der statischen Achskraft nach der Formel

$$S_{\alpha} \approx 2 \text{ T} \cdot \sin \frac{\beta}{2} \cdot z$$

Diese Kontrollmethode erfordert jedoch spezielle Messinstrumente zum direkten Kontrollieren der statischen Achskraft.

Beispiel:

 $P_{B} = 23.4 \text{ kW}$

 $c_1 = 1.0$

v = 16,6 m/s

Antriebsauslegung mit 1 optibelt RB Rippenband 12 PL 1075

$$T \approx \frac{500 \cdot (2,03 - 1,0) \cdot 23,4}{1,0 \cdot 12 \cdot 16,6} + 0,036 \cdot 16,6^2 \approx 70 \text{ N}$$

Bei Erstmontage ist die Trumkraft mit dem Faktor 1,3 zu multiplizieren.

$$T \approx 1.3 \cdot 70 \approx 91 \text{ N}$$

Über Rippenbandrücken ohne Vorspannung gemessene Länge: $L_a = 1100 \text{ mm}$

$$A \approx 1075 \cdot 0,00264 \approx 3 \text{ mm}$$

$$L_a^* \approx 1100 + 3 = 1103 \text{ mm}$$

Tabelle 19: Dehnungsfaktor R für optibelt RB Rippenbänder

rofil	PH	PJ	PK	PL	PM
15 20 25 30 35 40 45 50 55 60 [N]	0,00155 0,00207 0,00263 0,00331 0,00407 0,00500 0,00600 0,00700 0,00831 0,00958 0,01229 0,01356 0,01500 0,01636 0,01780 0,01924 0,02070 0,02644	0,00090 0,00130 0,00168 0,00206 0,00248 0,00300 0,00348 0,00406 0,00459 0,00522 0,00580 0,00644 0,00715 0,00786 0,00863 0,00949 0,01021 0,01106 0,01469 0,01849 0,02229	0,00065 0,00077 0,00093 0,00114 0,00136 0,00160 0,00192 0,00223 0,00254 0,00280 0,00312 0,00346 0,00377 0,00411 0,00445 0,00572 0,00693 0,00820 0,00949 0,01095	0,00066 0,00080 0,00094 0,00109 0,00127 0,00142 0,00160 0,00175 0,00212 0,00228 0,00242 0,00261 0,00277 0,00297 0,00369 0,00437 0,00509 0,00580 0,00651 0,00735 0,00811 0,00849	0,00062 0,00072 0,00079 0,00087 0,00098 0,00101 0,00111 0,00124 0,00135 0,00159 0,00190 0,00219 0,00249 0,00279 0,00314 0,00340 0,00356 0,00373 0,00405 0,00405 0,00405 0,00742 0,00706 0,00742 0,00772 0,00814 0,00850 0,00889 0,00929 0,00968 0,01004 0,01036 0,01076 0,01116 0,01156

Zwischenwerte aus der Tabelle sind durch lineare Interpolation zu ermitteln.

TECHNISCHE HILFSMITTEL

FREQUENZ-MESSGERÄT optibelt TT MINI S

Das optibelt TTMINI S Frequenz-Messgerät dient zur Vorspannungsüberprüfung von Antriebsriemen durch Frequenzmessung.

Dieses Messgerät bietet durch seine kompakte Bauform universelle Einsatzmöglichkeiten für Antriebe im Maschinenbau, in der Kfz-Industrie und für viele weitere Anwendungsfälle.

Selbst an schwer zugänglichen Stellen kann TTMINI S mühelos eingesetzt werden.

Einfach und schnell lassen sich Keilriemen, Kraftbänder, Rippenbänder und Zahnriemen auf ihre Vorspannwerte

Darüber hingus bietet TTMINI S weitere Vorteile:

- Anzeige in Hertz [Hz]
- großer Messbereich von 10 bis 600 Hz
- einfache und wiederholgenaue Messung
- kleine, kompakte Bauform (Handy-Größe)
- automatische Abschaltfunktion
- Werkskalibrierung und CE-Abnahme

Nach dem Einschalten ist das Gerät sofort zur Messung bereit. Der vorgespannte Riemen wird durch Anschlagen per Finger oder mit einem Gegenstand in Schwingungen versetzt.

Der Messkopf ist über den zu messenden Riemen zu halten, TTMINI S beginnt zu messen und zeigt das Ergebnis in

Die Beschaffenheit, Farbe und Art des Riemens haben keinen Einfluss auf die Messung, es wird ein akustisches Messprinzip zugrunde gelegt.

Trumkraftberechnung

$T = 4 \cdot k \cdot L^2 \cdot f^2$ Formel:

T △ Trumkraft [N]

L △ Trumlänge [m] f △ Frequenz [Hz]

TECHNISCHE DATEN

Anzeige:

LCD, zweizeilig

Messbereich:

10 bis 600 Hz

Messgenauigkeit:

10-400 Hz +/- 1 % > 400 Hz +/- 2 %

Auflösung:

10-99,9 Hz 0,1 Hz > 100 Hz

Sensor:

akustisch, mit elektronischer Störgeräuschunterdrückung

Stromversorgung:

Batterien, 2 x Micro (AAA-Zellen)

Stromverbrauch:

max. 12 mA

Arbeitszeit:

> 48 Stunden Dauermessung (abhängig von der Qualität der eingesetzten Batterieart), automatisches Abschalten nach 5 Minuten

Abmessung:

110 mm x 50 mm x 25 mm

Gewicht:

 $\leq 100 g$

Prüfung:

CE-Abnahme Werkskalibrierung

Zubehör:

Batterien, Tasche

TECHNISCHE HILFSMITTEL

FREQUENZ-MESSGERÄT optibelt TT OPTICAL

Das optibelt TTOPTICAL Frequenz-Messgerät dient zur Vorspannungsüberprüfung von Antriebsriemen durch Frequenzmessung.

Dieses neu entwickelte Messgerät bietet durch seine kompakte Bauform universelle Einsatzmöglichkeiten für Antriebe im Maschinenbau, in der Kfz-Industrie und für viele weitere Anwendungsfälle.

Einfach und schnell lassen sich Keilriemen, Kraftbänder, Rippenbänder und Zahnriemen auf ihre Vorspannwerte

Darüber hinaus bietet TTOPTICAL weitere Vorteile:

- einfache Bedienung
- Messbereich 5 Hz bis 500 Hz
- kompakte Abmessungen
- höchste Zuverlässigkeit
- hohe Messgenauigkeit
- keine Messbeeinflussung durch Umgebungsgeräusche
- werkskalibriert
- CE-zugelassen

Nach dem Einschalten ist das Gerät sofort zur Messung bereit. Der vorgespannte Riemen wird durch Anschlagen per Finger oder mit einem Gegenstand in Schwingungen

Der Messkopf ist über den zu messenden Riemen zu halten, TTOPTICAL beginnt zu messen und zeigt das Ergebnis in

TECHNISCHE DATEN

Anzeige:

LCD, zweizeilig

Messbereich:

5 Hz bis 500 Hz

Messgenauigkeit:

- < 10 Hz = 0.5 Hz
- > 10 Hz = 1.0 Hz

Sensor:

optisch, mit Sensor

Stromversorgung:

9-V-Block-Batterie

Arbeitszeit/Abschaltfunktion:

> 48 Stunden Dauermessung (abhängig von der Qualität der eingesetzten Batterieart), automatisches Abschalten nach 2 Minuten

Abmessuna:

170 mm x 45 mm x 30 mm

Gewicht:

 $\leq 100 \, g$

Prüfung:

CE-Abnahme, RoHS, Werkskalibrierung

Zubehör:

Batterie

BESTIMMUNG DER ACHSKRAFT/

ACHSBELASTUNG IM DYNAMISCHEN ZUSTAND

Um frühzeitigem Lagerausfall, Wellenbruch oder Überdimensionierung der Lager und Wellen vorzubeugen, empfiehlt es sich, eine genaue Berechnung der dynamischen Achskraft durchzuführen, da nur so die wirklich auftretenden Belastungen für Wellen und Lager am An- und Abtriebsaggregat erkannt werden.

An- und Abtriebswellen bzw. Lager werden bei 2-Scheiben-Antrieben mit der gleichen dynamischen Achskraft belastet, allerdings in entgegengesetzter Richtung.

Beim Einsatz von Rollen sind fast immer die Größe der Achskraft und die Richtung an jeder Scheibe unterschiedlich. Sollen Größe und Richtung der dynamischen Achskraft bestimmt werden, empfiehlt sich immer die grafische Lösung durch das Kräfteparallelogramm mit den dynamischen Kräften im Lasttrum S_1 und Leertrum S_2 . Soll nur die Größe der dynamischen Achskraft bestimmt werden, kann dies über die Formel "S_{a dyn}" erfolgen. Im folgenden Beispiel werden beide Verfahren dargestellt.

Daten aus Berechnungsbeispiel der Seiten 22 bis 24:

$$P_B = 23.4 \text{ kW}$$

$$c_1 = 1.0$$

$$v = 16,6 \text{ m/s}$$

$$c_1 = 1.0$$

 $\beta = 175^{\circ}$

Belastung im Lasttrum während des Riemenlaufs

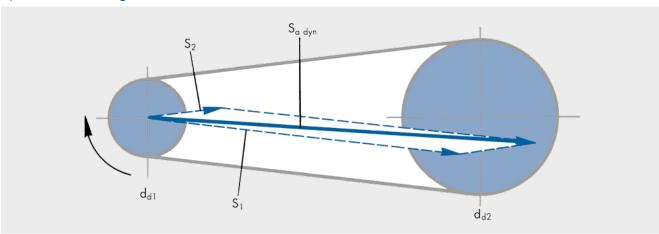
$$S_1 \approx \frac{1030 \cdot P_B}{c_1 \cdot v}$$

$$S_1 \approx \frac{1030 \cdot 23.4}{1.0 \cdot 16.6} \approx 1452 \text{ N}$$

Belastung im Leertrum während des Riemenlaufs

$$S_2 \approx \frac{1000 \cdot (1,03-c_1) \cdot P_B}{c_1 \cdot v}$$

$$S_2 \approx \frac{1000 \cdot (1,03 - 1,0) \cdot 23,4}{1,0 \cdot 16,6} \approx 42 \text{ N}$$


A) Lösung über Formel Sadyn

Achskraft im dynamischen Zustand

$$S_{a \, dyn} \approx \sqrt{S_1^2 + S_2^2 - 2 \, S_1 \cdot S_2 \cdot \cos \beta}$$

$$S_{a \text{ dyn}} \approx \sqrt{1452^2 + 42^2 - 2 \cdot 1452 \cdot 42 \cdot (-0,99619)}^{3} \approx 1494 \text{ N}$$

B) Grafische Lösung

LÄNGENTOLERANZEN - MONTAGE UND WARTUNG -**GEMÄß ISO 9982**

Tabelle 20: Längentoleranzen

	Profil PH	Profil PJ	Profil PK	Profil PL	Profil PM
Bezugslänge L _b [mm]	Toleranz [mm]	Toleranz [mm]	Toleranz [mm]	Toleranz [mm]	Toleranz [mm]
> 200 ≤ 500	+ 4 - 8	+ 4 - 8	+ 4 - 8		
> 500 ≤ 750	+ 5 - 10	+ 5 - 10	+ 5 - 10		
> 750 ≤ 1000	+ 6 - 12	+ 6 - 12	+ 6 - 12	+ 6 - 12	
> 1000 ≤ 1500	+ 8 - 16	+ 8 - 16	+ 8 - 16	+ 8 - 16	
> 1500 ≤ 2000	+ 10 - 20	+ 10 - 20	+ 10 - 20	+ 10 - 20	
> 2000 ≤ 3000	+ 12 - 24				
> 3000 ≤ 4000				+ 15 - 30	+ 15 - 30
> 4000 ≤ 6000				+ 20 - 40	+ 20 - 40

Montage und Wartung

Geometrisch und leistungsmäßig korrekt ausgelegte Antriebe mit optibelt RB Rippenbändern gewährleisten hohe Betriebssicherheit und optimale Lebensdauer.

Die Praxis beweist, dass unbefriedigende Laufzeiten sehr häufig auf Montage- und Wartungsfehler zurückzuführen sind. Um diesem vorzubeugen, empfehlen wir, die nachstehenden Montage- und Wartungshinweise zu beachten.

Sicherheit

Vor Beginn von Wartungsarbeiten ist zu gewährleisten, dass alle Maschinenkomponenten in einer Sicherheitsposition sind und während der Wartungsarbeiten diese nicht verändert werden kann. Zu beachten sind außerdem die Sicherheitsempfehlungen des Maschinenherstellers.

Scheiben

Die Rillen müssen normgerecht gefertigt und sauber sein (kein Grat oder Rost).

Ausrichten

Wellen und Scheiben sind vor der Montage fluchtend

Wir empfehlen, dass die maximale Abweichung der Scheibenflucht nicht mehr als 0,5° beträgt.

• Montage der Rippenbänder

Vor der Montage ist der Achsabstand so zu verringern, dass die Rippenbänder ohne Zwang in die Rillen gelegt werden können. Eine gewaltsame Montage mittels Montiereisen, Schraubenzieher etc. ist in jedem Fall unzulässig, da dies, oftmals nicht sichtbar, den hochwertigen, dehnungsarmen Zugstrang oder die Rippen beschädigt.

Vorspannung

Nachdem die ermittelte Achskraft aufgebracht wurde, ist die Vorspannung des Rippenbandes zu kontrollieren. Verwenden Sie hierzu unsere Vorspannungsmessgeräte. Methoden siehe auf den Seiten 48 bis 51. Während der ersten Betriebsstunden ist der Antrieb zu beobachten und erfahrungsgemäß nach einer Laufzeit unter Volllast von ca. 0,5 bis 4 Stunden nachzuspannen. Dadurch wird die Anfangsdehnung aufgenommen.

• Spann-/Führungsrollen

Spann- und Führungsrollen sind zu vermeiden. Sollte dies nicht möglich sein, so sind unsere Hinweise auf Seite 33 bis 34 dieses Handbuches zu beachten.

Wartung

Es empfiehlt sich, die Rippenbandantriebe regelmäßig zu kontrollieren. Hierzu gehört auch, die Spannung zu überprüfen und ggf. zu korrigieren.

Fremdkörper wie Steine, Späne oder andere Medien dürfen nicht zwischen Scheibe und Rippenband gelangen. Sie sind durch geeignete Schutzvorrichtungen vom Antrieb fernzuhalten.

optibelt RB Rippenbänder benötigen keine besondere Pflege. Der Gebrauch von Riemenwachs und Riemenspray ist unbedingt zu vermeiden.

KONSTRUKTIONSHILFEN RIPPENBANDBREITEN

Tabelle 21

Anzahl der	Profil PH	Profil PJ	Profil PK	Profil PL	Profil PM
Rippen z	[mm]	[mm]	[mm]	[mm]	[mm]
2 3 4 5 6 7 8 9	3,20 4,80 6,40 8,00 9,60 11,20 12,80 14,40 16,00	4,68 7,02 9,36 11,70 14,04 16,38 18,72 21,06 23,40	7,12 10,68 14,24 17,80 21,36 24,92 28,48 32,04 35,60	9,40 14,10 18,80 23,50 28,20 32,90 37,60 42,30 47,00	18,80 28,20 37,60 47,00 56,40 65,80 75,20 84,60 94,00
11	17,60	25,74	39,16	51,70	103,40
12	19,20	28,08	42,72	56,40	112,80
13	20,80	30,42	46,28	61,10	122,20
14	22,40	32,76	49,84	65,80	131,60
15	24,00	35,10	53,40	70,50	141,00
16	25,60	37,44	56,96	75,20	150,40
17	27,20	39,78	60,52	79,90	159,80
18	28,80	42,12	64,08	84,60	169,20
19	30,40	44,46	67,64	89,30	178,60
20	32,00	46,80	71,20	94,00	188,00
21	33,60	49,14	74,76	98,70	197,40
22	35,20	51,48	78,32	103,40	206,80
23	36,80	53,82	81,88	108,10	216,20
24	38,40	56,16	85,44	112,80	225,60
25	40,00	58,50	89,00	117,50	235,00
26	41,60	60,84	92,56	122,20	244,40
27	43,20	63,18	96,12	126,90	253,80
28	44,80	65,52	99,68	131,60	263,20
29	46,40	67,86	103,24	136,30	272,60
30	48,00	70,20	106,80	141,00	282,00

Rippenbänder mit mehr als 30 Rippen sollten geteilt werden. Zwischen zwei Rippenbändern sollte eine Rippe Abstand eingehalten werden.

KONSTRUKTIONSHILFEN STÖRUNG - URSACHE - ABHILFE

Störung	Mögliche Ursachen	Abhilfe
Außergewöhnlicher Verschleiß der Rippen	Zu geringe Vorspannung Einwirken von Fremdkörpern während des Betriebes Scheiben fluchten nicht Scheiben fehlerhaft Falsches Rippenband-/Scheibenprofil	Vorspannung korrigieren Schutzvorrichtung anbringen Scheiben ausrichten Scheiben nacharbeiten oder auswechseln Rippen- und Scheibenprofil aufeinander abstimmen
Rippenbandbruch nach kurzer Laufzeit (Riemen zerrissen)	Rippenband schleift oder schlägt an Bauteile Antrieb blockiert Antrieb überlastet Einwirken von Öl, Fett, Chemikalien	Störende Bauteile beseitigen; Antrieb neu ausrichten Ursache beseitigen Antriebsverhältnisse überprüfen und neu dimensionieren Antrieb vor Umwelteinflüssen schützen
Brüche und Risse der Rippen (Versprödung)	Einwirkung einer Außenrolle, deren Anordnung und Durchmesser nicht unseren Empfehlungen entsprechen Unterschreitung der Mindestscheibendurchmesser Übermäßige Hitzeeinwirkung Übermäßige Kälteeinwirkung Erhöhter Riemenschlupf	OPTIBELT-Empfehlungen beachten, z. B. Durchmesser vergrößern; Rolle im Leertrum, von innen nach außen wirkend, anbringen Mindestscheibendurchmesser einhalten Wärmequelle beseitigen, abschirmen; Luftzirkulation verbessern Rippenband vor Inbetriebnahme erwärmen Antrieb laut Montageanweisung nachspannen; Antriebsverhältnisse überprüfen und gegebenenfalls neu dimensionieren Antrieb abschirmen

KONSTRUKTIONSHILFEN STÖRUNG - URSACHE - ABHILFE

Störung	Mögliche Ursachen	Abhilfe
Starke Schwingungen	Antrieb unterdimensioniert	Antriebsverhältnisse überprüfen und neu dimensionieren
	Achsabstand erheblich größer als Empfehlungen	Achsabstand verringern; Beruhigungsrolle im Leertrum anbringen
	Hohe Stoßbelastung	Beruhigungsrolle verwenden
	Zu geringe Vorspannung	Vorspannung korrigieren
	Keilrippenscheiben nicht ausgewuchtet	Scheiben auswuchten
Rippenbänder können nicht mehr nachgespannt werden	Verstellmöglichkeit des Achsabstandes zu gering	Verstellmöglichkeit entsprechend OPTIBELT-Empfehlungen ändern
optib	Übermäßige Riemendehnung, da leistungsmäßig unterdimensioniert	Antriebsberechnung durchführen und neu dimensionieren
	Falsche Rippenbandlänge	Kürzere Länge einsetzen
Übermäßige Laufgeräusche	Scheiben fluchten nicht	Scheiben ausrichten
	Zu geringe Vorspannung oder zu hohe Vorspannung	Vorspannung überprüfen
	Antrieb überlastet	Antriebsverhältnisse überprüfen und neu dimensionieren
Rippenband schwammig und klebrig	Einwirken von Öl, Fett, Chemikalien	Antrieb vor Fremdeinwirkungen schützen
		Scheiben vor Einsatz neuer Rippen- bänder mit Waschbenzin oder Benzol säubern!

Bei weiteren Störungsursachen wenden Sie sich bitte an die Ingenieure der Anwendungstechnik. Ausführliche technische Angaben sind für eine konkrete Hilfestellung erforderlich.

KONSTRUKTIONSHILFEN **ZUSATZPROGRAMM**

optibelt TT MINI S

Einfach und schnell lassen sich Keilriemen, Kraftbänder, Rippenbänder und Zahnriemen auf ihre Vorspannwerte

Mit flexiblem Schwanenhals für mühelose Messungen an besonders schwer zugänglichen Stellen.

optibelt TT OPTICAL

Keilriemen, Kraftbänder, Rippenbänder und Zahnriemen lassen sich einfach und schnell auf ihre Vorspannwerte

Die Beschaffenheit, Farbe und Art des Riemens haben keinen Einfluss auf die Messung, es wird ein optisches Messprinzip zugrunde gelegt.

optibelt LASER POINTER II

Eine unerlässliche Hilfe für Riemenantriebe Der bedienerfreundliche optibelt LASER POINTER II ist ein Gerät, das sich besonders in der täglichen Anwendungspraxis bewährt. Der optibelt LASER POINTER II erleichtert das Ausrichten von Riemenantrieben. Er hilft beim Erkennen der häufigsten Ursachen von Antriebsstörungen:

- des axialen Versatzes der Scheiben
- der horizontalen Winkelabweichung
- der vertikalen Winkelabweichung

OPTIBELT-RILLENLEHREN

Mit den Rillenlehren lassen sich Riemen und Scheiben mühelos und schnell identifizieren. Insbesondere können damit auch die Rillenflanken der Keilscheiben auf Winkelfehler und Abnutzung überprüft werden.

DATENBLATT ZUR BERECHNUNG/ÜBERPRÜFUNG VON ANTRIEBEN

		Firma	
		Straße/Postfach	
		PLZ/Ort	
		Sachbearbeiter	
		Tel. (E-Mail	
für Versuch	neuer Antrieb	ausgelegt mit	
für Nullserie	bestehender Antrieb	Stück Bezugslänge Profil Anzahl der Rippen Fabrik	at
für Serie	BedarfStück/Jahr		
Antriebsmase		Arbeitsmaschine	
	pr, Dieselmotor 3 Zyl.)	Art (z. B. Drehmaschine, Kompressor)	$\overline{}$
	aufmoments (z.B. MA = 1,8 MN)	Anlauf: unter Last \square im Leerlauf	ш
tägliche Betrieb	ern-Dreieck)Stunden	Art der Belastung: konstant pulsierend	
•	naltungen stündlich	stoßartig	ш
	nderung pro Minute Stunde	siobung	
•	malkW	Leistungsbedarf: P normal	kW
•	ximal kW	P maximal	
	nmoment Nm bei n ₁ min ⁻¹	oder max. Drehmoment Nm bei n ₂	
	1 min ⁻¹	Drehfrequenz n ₂ rain ber n ₂	,
·	Wellen: horizontal vertikal	n _{2 min}	-
9	schräg	n _{2 max}	
Maximal zuläss	sige Achskraft S _{a max} N	Maximal zulässige Achskraft S _{a max}	
	ußendurchmesser der Scheibe:	Bezugs- oder Außendurchmesser der Scheibe:	
d _{b1}	mm	d _{b2}	mm
d _{b1 min}	mm	d _{b2 min}	_ mm
d _{b1 max}	mm	d _{b2 max}	_ mm
${\sf Scheibenbreite}$	$b_{2\;\text{max}}\;\;\underline{\qquad}\;\;\underline{\qquad}\;\;mm$	Scheibenbreite b _{2 max}	mm
	Übersetzung i	i _{min} i _{max}	
	Achsabstand amm	α_{min} mm α_{max} mm	
	Spann-/Führungsrolle: Innenrolle	im gezogenen Trum	
	Außenrolle	im ziehenden Trum	
	d _b mm Keilrippenscheibe	beweglich (z. B. Feder)	
	d _a mm Flachscheibe	fest	
	Betriebsbedingungen: Umgebungstemperatur	°C minimal	
		°C maximal	
	Einfluss von Öl	(z.B. Ölnebel, Tropfen)	
	Wasser	(z. B. Spritzwasser)	
	Säure L	(Art, Konzentration, Temperatur)	
	Staub	(Art)	

Sonderantriebe: Bei z.B. Antrieben mit Spann-/Führungsrollen, 3- oder Mehrscheiben-Antrieben sowie Antrieben mit gegenläufiger Drehrichtung sind Zeichnungsunterlagen erforderlich.

Erläuterungen zum Antrieb:

NOTIZEN	

NOTIZEN	
	_
	_

NOTIZEN	
	_
	_
	_
	_

 $Inhaber\ s\"{a}mtlicher\ Urheber-\ und\ Leistungsschutzrechte\ sowie\ sonstiger\ Nutzungs-\ und\ Verwertungsrechte:$

Arntz OPTIBELT Unternehmensgruppe, Höxter/Deutschland.

Jegliche Nutzung, Verwertung, Vervielfältigung oder jegliche Weitergabe an Dritte bedarf der vorherigen schriftlichen Genehmigung durch die Arntz OPTIBELT Unternehmensgruppe, Höxter/Deutschland.

Print: 41-1572/0215Hux

OPTIBELT GmbH

Corveyer Allee 15 37671 Höxter GERMANY **T** +49 (0) 5271-621 **F** +49 (0) 5271-976200

E info@optibelt.com

www.optibelt.com